
CIP: The Programming
Language

A general purpose programming language with SIMD
capabilities

D406F12, Spring 2012, Aalborg University

May 24, 2012

0.0 Titlepage 3

The Faculty of Engineering and Science

Computer Science 4rd term

Address: Selma Lagerlöfs Vej 300

9220 Aalborg Øst

Phone no.: 99 40 99 40

Fax no.: 99 40 97 98

Homepage: http://www.cs.aau.dk

Project title:
CIP: The Programming Language

Subject:
Design, Definition and Implementa-
tion of Programming Languages

Project periode:
Spring 2012

Group name:
D406F12

Supervisor:
Alexandre David

Group members:
Christoffer Moesgaard
Daniel Hillerström
Daniel Rune Jensen
Eric Vignola Ruder
Kimmo V. Andersen
Mathias Ruggaard Pedersen
Søren Kejser Jensen

Copies: 9

Pages: 91

Appendices: 12

Finished: 25-05-2012

Abstract:

This report is built upon the idea of cre-

ating a language that is capable of utiliz-

ing SIMD instructions. In this report we

will analyse the problems and possibilities

of designing such a language and creating

a compiler that can compile this language,

as well as design decisions that must be

taken into consideration while creating our

language. We have chosen to call this lan-

guage CIP. Throughout this report we will

go through all the steps necessary to create

a general purpose programming language

with data parallel capabilities. A context-

free grammar is created for the language,

which will in turn be used to create an

abstract syntax tree. A series of visitors

will be created that will traverse the tree,

each accomplishing a different task. The

last visitor is the code generation visitor

which emits code fragments to a specified

output file. We benchmark our compiler

against GCC’s C compiler in order to see

if the theoretical increase in performance

due to the use of SIMD instruction also

reflects in practice. We manage to im-

plement our language and the benchmark

shows that our language is better than or

on par with GCC compiling an equiva-

lent C program at GCC’s lowest optimiza-

tion option. However, when GCC compiles

with optimisation, the C program is much

faster than our language.

The content of this report is publicly available, publication with source reference is only

allowed with authors’ permission.

http://www.cs.aau.dk

0.0 Preface 5

Preface

This report is the result of a semester project for the fourth computer science
semester at Aalborg University. The project started on the 1st of February
2012 after a presentation of a series of project proposals and a subsequent
formation of project groups. We followed two courses alongside this project
that have had an impact on the project. The first course was about compiler
construction and language design and was taught by associate professor Bent
Thomsen. The second course was taught by associate professor Hans Hüttel
and was about how to document the syntax and semantics of a programming
language.

The material distributed along with this report is available online at
http://dhil.net/public/edu/aau/d406f12/ which includes the full source
code of our compiler and the test programs.

Christoffer Moesgaard Daniel Hillerström Daniel Rune Jensen

Eric Vignola Ruder Kimmo V. Andersen Mathias Ruggaard Pedersen

Søren Kejser Jensen

http://dhil.net/public/edu/aau/d406f12/

Contents

1 Introduction 9
1.1 Initial problem . 9
1.2 Single Instruction, Multiple Data 11
1.3 SIMD extensions . 12
1.4 Problem statement . 14

2 Analysis 15
2.1 Streaming SIMD Extensions 15
2.2 Utilising SSE through GCC 17
2.3 Manual optimisation of code using SSE instructions 20
2.4 Branching . 20
2.5 Existing solutions . 22
2.6 Compiler construction tools 26

3 Design decisions 29
3.1 General language design decisions 29
3.2 Compiler implementation language 30
3.3 Target language . 30
3.4 Parser generator . 30

4 Language design 33
4.1 Design philosophy . 33
4.2 Operational semantics for CIP 33
4.3 Our language . 40
4.4 Contextual rules . 42
4.5 Language changes . 44

5 Compiler architecture 47
5.1 Design patterns . 47
5.2 Compiler model . 50

6 Test of compiler 67
6.1 Testing Methods . 67
6.2 CIP Benchmark . 67

7 Conclusion and discussion 71
7.1 Conclusion . 71
7.2 Discussion . 72

A Context-Free Grammar 77
A.1 The grammar . 77

8 CONTENTS

B Cip example programs 79
B.1 Hello world . 79
B.2 Cross product . 79
B.3 Fibonacci . 80
B.4 Euclidean . 80
B.5 Pythagorean triplets . 81
B.6 Matrix manipulation . 82

C Formal semantics for CIP 85
C.1 Formal Semantics . 85

Bibliography 89

CHAPTER 1
Introduction

In this chapter we will give an introduction to the project and present our
problem statement. Before presenting the problem statement we will discuss
the initial problem analysis.

In this project we will work with programming language design and Single
Instruction, Multiple Data (SIMD) instructions and we will try to design
and implement a programming language that uses the facilities of the SIMD
instructions.

1.1 Initial problem

Our choice of subject and initial problem is born out of curiosity. We have
chosen to study how to use the SIMD technology because of the theoretical
performance increase that a regular Single Instruction, Single Data (SISD)
program could gain under the right circumstances [1]. We want to learn
about the concept of true data parallelism which SIMD is based on. Prior to
this project none of us have had any experience with the SIMD technology,
therefore we begin this project by asking:

What is the SIMD technology and how may it be employed?

Throughout this chapter we will study the concepts of SIMD to obtain a
thorough understanding of the technology’s capabilities and limitations.

1.1.1 Motivation for data parallelism

To help understand the concept of data parallelism and to show the moti-
vation for using it we have constructed an example which we will refer to
throughout this report. The code example in source code 1.1 is written in a
high-level C-like syntax, we use a mathematical set notation to denote the
contents of the vectors A and B.

1 // Vector containing n even numbers

2 int A[n] = { 2k | ∀k ∈ N, k < n };

3 // Vector containing n odd numbers

4 int B[n] = { 2k+1 | ∀k ∈ N, k < n };

5
6 // B + A

7❶ for (int i = 0; i < n; i++)

8 B[i] = B[i] + A[i];

9 // Square A

10❷ for (int i = 0; i < n; i++)

11 A[i] = A[i] * A[i];

Source code 1.1: Additive and multiplicative arithmetic laws of object parity.

10 Introduction 1

The simple code example in source code 1.1 demonstrates two of the mathe-
matical laws of vector arithmetic, namely the addition ❶ and multiplication
❷ of vectors. On their own these laws of vector arithmetic are not of interest
to us, however in source code 1.2 we have compiled ❶ into x86-64 assembly
code, using GNU Compiler Collection (GCC). Instructions not involved in
the actual mathematical operation have been omitted.

1 jmp .L2

2.L3:
3 //Adds B[i] and A[i] and assigns the result to B[i]

4 movl -4(%rbp), %eax

5 cltq

6❶ movl -96(%rbp ,%rax ,4), %edx

7 movl -4(%rbp), %eax

8 cltq

9❷ movl -48(%rbp ,%rax ,4), %eax

10 addl %eax , %edx

11 movl -4(%rbp), %eax

12 cltq

13❸ movl %edx , -96(%rbp ,%rax ,4)

14 // Increments i by one

15 addl $1 , -4(%rbp)

16.L2:
17 // Compares i with n to check if the loop should terminate

18 movl -4(%rbp), %eax

19 cmpl -8(%rbp), %eax

20 jl .L3

Source code 1.2: Vector addition in assembly language.

A quick analysis of the code reveals that the add-instruction is applied se-
quentially one element at a time. ❶ reads the value [B + 4i] from memory
and then places it in the 32-bit register edx, and [A + 4i] is loaded into eax

at ❷. In ❸ the contents of edx and eax are added and the sum is stored in
[B + 4i]. This procedure is repeated n times. From this we can see that the
same instruction is being applied on a single piece of data of an arbitrary
size n times. We see the same pattern in the example code in source code
1.3 which shows the x86-64 assembly code for squaring a vector.

1 jmp .L2

2.L3:
3 // Squares A[i] and assigns the result to A[i]

4 movl -4(%rbp), %eax

5 cltq

6 movl -48(%rbp ,%rax ,4), %edx

7 movl -4(%rbp), %eax

8 cltq

9 movl -48(%rbp ,%rax ,4), %eax

10❶ imull %eax , %edx

11 movl -4(%rbp), %eax

12 cltq

13 movl %edx , -48(%rbp ,%rax ,4)

14 // Increments i by one

15 addl $1 , -4(%rbp)

16.L2:
17 // Compares i with n to check if the loop should terminate

18 movl -4(%rbp), %eax

19 cmpl -8(%rbp), %eax

1.2 Single Instruction, Multiple Data 11

20 jl .L3

Source code 1.3: Vector squaring in assembly language.

Again we see a very similar patten, where the instruction is being applied
successively at ❶. We will now consider the possibility of applying the
instruction on multiple data in parallel.

1.2 Single Instruction, Multiple Data

SIMD is a special instruction set which allows a single operation to be ap-
plied to multiple data and is supported by most modern processors [1]. Both
SIMD and SISD are part of Flynn’s taxonomy together with MISD and
MIMD which means Multiple Instruction, Single Data and Multiple Instruc-
tion, Multiple data, respectively. Flynn’s taxonomy can be represented vi-
sually as seen in figure F1-1 which describes all four computer architectures,
with the first dimension representing the amount of instruction streams that
a computer architecture can process at a time and the second dimension
representing the amount of data streams that a computer architecture can
process at a time. [2] In this project we will not be concerned with multiple
instruction architectures.

Figure F1-1: A visual representation of Flynn’s taxonomy [2].

SIMD differs from SISD in the amount of data that can be manipulated
per instruction. In SISD the CPU can only send a single instruction stream
to a single stream of data stored in memory each clock cycle. SIMD is
capable of sending a single instruction stream to multiple data streams at
once thus applying the instruction on the data streams in parallel. [2] This
concept can be seen in figure F1-2 where SISD takes a single instruction that
is used on a single piece of data, giving a single result. SIMD on the other
hand takes a single instruction and uses it on multiple pieces of data, which
gives a number of results equal to the amount of input data.

SIMD is therefore beneficial in applications of multimedia which usually
have large amount of data with consistent associations. The data processing
capabilities of SIMD effectively increase the efficiency of applications with
a large amount of data with consistent associations compared to similar
application that only utilise SISD technology. [4] Furthermore, when using

12 Introduction 1

Figure F1-2: The difference between SISD and SIMD [3].

SIMD, power consumption is reduced in most appliances compared to using
standard SISD. [5]

Some modern compilers support the utilisation of SIMD technologies
through optimisation routines. However it is not possible for the programmer
to specify where to use the SIMD instruction and as such the programmer
can not know which parts of the program are optimised. Therefore it may be
necessary to write SIMD subprograms in assembly language rather than hav-
ing the compiler construct the appropriate SIMD program in order to gain
control of when the technology is used. [1] Some compilers allow compiler-
specific language extensions that allow more control over how SIMD is used.
For example, GCC has an extension which provides a way to define arrays
as vectors, meaning that operations on these vectors will be performed using
SIMD instructions. These extensions are described in section 2.2.3.

1.3 SIMD extensions

SIMD is supported by most CPUs today and is included in the instruction
set of the CPU, which can be studied through the manuals published by the
industry and implemented directly as assembly code.

SIMD describes any extension to CPUs that allows the CPU to execute
instuctions on data in parallel. Some of the most common SIMD extensions
to CPUs are MMX, SSE, and 3DNow! and most of these sets have been
extended further since their first release. These extensions can be seen in
figure F1-3, which shows a timeline of the main SIMD extensions. As can be
seen from figure F1-3, MMX was the first SIMD extension and others have
since been developed, some of which have extended the MMX instruction
set. [6]

The Intel branch of the SIMD extensions will be the focus of this project.

1.3 SIMD extensions 13

Figure F1-3: SIMD extension timeline.

14 Introduction 1

The MMX extension introduced eight new 64-bit general purpose registers
which could be used in a number of ways by its instructions, but occupied
the same register space as the floating-point registers, thus not being able
to use these at the same time. Since then the MMX extension has been
extended further into 3DNow!, which is an AMD extension of the MMX. Intel
extended the MMX with Streaming SIMD Extensions (SSE) that added new
128-bit registers in another, separate register space, thus making it possible
to use floating-point and SIMD at the same time. After this the SIMD
extensions SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, and SSE4a did not expand
the registers but only added additional instruction sets to perform more
delicate operations on the registers. [6]

1.4 Problem statement

SIMD has proven faster when it is possible to structure the computations as
parallel computations, for example in the Xvid video encoder [7] which has
used SIMD instructions instead of SISD in order to improve performance.
We want to know if it is possible to create a programming language and
a corresponding compiler, that allows the programmer to seamlessly use
SIMD in conjunction with SISD, with little differentiation between the two
technologies, thereby allowing the programmer to focus on the problem at
hand instead of the implementation. At the same time, the language should
not sacrifice the performance gained through SIMD since SISD would then
be a more preferable solution, as it does not require specific data structures
like SIMD. This has led us to the following problem statement.

How may we design and implement a programming language that utilises
the concepts of SIMD?

Our problem statement resulted in the following questions, which to-
gether with the problem statement is the foundation of the design, imple-
mentation and testing of our programming language documented in the rest
of this report.

• How can such a language be formalised?

• Which data types should be established?

• How can we design constructs that are easy for the compiler to generate
SIMD instructions from?

• How can we encourage the programmer to use these constructs?

• How does the performance of our language compare with already es-
tablished compilers?

CHAPTER 2
Analysis

In this chapter we will look at problems related to SIMD parallelism and
solutions to these problems, most importantly the problem of branching,
and different implementation methods for SIMD. We will also look at other
parallel programming languages in order to gain inspiration for our own
language.

2.1 Streaming SIMD Extensions

SSE was introduced in 1999 and is like MMX an extension to the Intel and
AMD microprocessors. It was originally released as an extension for the Intel
Pentium III and AMD AthlonXP series. SSE differs from MMX by adding
a new, separate register space to the microprocessor. Due to this the usage
of SSE requires the operating system to support it. However, SSE has been
supported on Windows and Linux since Windows 98 and Linux kernels 2.2.
[6]

SSE added eight new 128-bit registers XMM0 through XMM7, collectively
called XMMi. These registers can store the new packed data type introduced
in SSE, which consists of four 32-bit single-precision floating point values
[6]. Beside the eight new registers an additional register MXCSR was also
added. The MXCSR-register is a 32-bit control register which contains flags
for control and status regarding SSE instructions [6]. The 32-bit version of
the entire SSE programming environment can be seen in figure F2-1. In a
64-bit version, the amount of registers would double to 16, and the address
space would be increased to 264 − 1.

In addition, SSE added 70 new instructions that operate on the new 128-
bit registers, the MMX registers, and some that operate on the regular 32-bit
registers [6]. SSE contains several interesting instructions such as floating
point arithmetic instructions for addition, subtraction, multiplication, and
division on multiple pieces of data. These are called addps, subps, mulps,
and divps, respectively, and are capable of performing basic arithmetic oper-
ations on four single-precision values with four other single-precision values.
A visual representation of how these operations work can be seen in figure
F2-2. Similar instructions for other data types are similar except for the
amount of data elements that can be worked on at a time due to the size of
the registers.

The compare instruction cmpeqps is capable of comparing two packed
data types, containing four single-precision values each, to determine whether
each value is equal to the corresponding value in the second packed data type.
This particular instruction has several sibling instructions, one for each of
the relational operators (=,≤, <,≥, > etc.).

16 Analysis 2

Figure F2-1: SSE programming environment for x86 [8].

Figure F2-2: Arithmetic operations on four data elements in parallel [8].

2.1.1 Streaming SIMD Extensions 2

Streaming SIMD Extensions 2 (SSE2) was introduced by Intel in 2000 for the
Pentium 4 microprocessor, and adopted by AMD in 2003 for their Opteron
and Athlon 64 processors. SSE2 uses the same XMMi registers as SSE [6] which
means that SSE2 does not need any additional operation system support, as
long as SSE is supported [8]. The main new feature introduced in SSE2 is
five new packed data types as can be seen in figure F2-3. These new packed
data types allow integer and double-precision floating point computations to
be performed using the XMMi registers [8].

SSE2 also introduced 144 new instructions in conjunction with the new
packed data types. These mostly include modifications of the existing in-
structions, to accommodate integer and double-precision floating point cal-
culations. Additionally, SSE2 introduced a new interesting instruction for
controlling how the processor uses its cache. [6, 8].

2.1.2 Streaming SIMD Extensions 4

Streaming SIMD Extensions 4 (SSE4) was officially announced on the 27th

of September, 2006. Both Intel and AMD included the SSE4 technology in
their processor releases in early 2007. [6, 9] SSE4 was at the time Intel’s

2.2 Utilising SSE through GCC 17

Figure F2-3: New packed data types introduced in SSE2 [8].

largest ISA extension since SSE2 in terms of scope and impact [9]. Among
the new extensions were the, as described by Intel, “new and innovative”
string processing instructions [9].

SSE4 is available in three flavours:

• SSE4.1

• SSE4.2

• SSE4a

SSE4.1 includes a total of 47 new instructions, SSE4.2 extends this instruc-
tion set by including seven new instructions. The SSE4a is an AMD variant
and therefore it does not support the full set of SSE4 instructions, however
it included six additional instructions for bit manipulation [6].

New instructions allow packed multiplication of four either signed or
unsigned 32-bit integers [9]. Such instructions help utilise the capabilities
of the SIMD/SSE4 architecture thus effectively improving the throughput
rate per clock cycle. New string instructions included in SSE4.2 provide a
comprehensive set of string processing capabilities [9]. These instructions
were designed to improve applications of string processing commonly found
in XML parsing, databases, compilers, etc.

2.2 Utilising SSE through GCC

There exist multiple methods which can be used to utilise the possibilities of
SSE2 without writing entire programs directly in assembly language. These
methods unfortunately often impose a certain degree of constraints on the
programmer, in an effort to make the resulting code easier for the compiler to
interpret and translate into SIMD instructions. The following is a description
of three such methods that use the C programming language and GCC. Our
reasons for using the C programming language and GCC as a target platform
are documented in chapter 3.

18 Analysis 2

2.2.1 Inline ASM

The C programming language allows the programmer to write assembly
language inline in the C program through the ASM function. This allows
the programmer to write assembly language and use SSE2 or other parts
of the instruction set with the rest of program implanted in higher level C
code. The GCC C compiler also supports an extended version of the ASM

function which removes the need to manage registers directly, and makes it
easier to interface with C variables. The code example in source code 2.1
demonstrates GCC’s extended version of the ASM function.

1 __asm__(
2 "Assembly instructions"

3 : Output Variables

4 : Input Variables

5 : Clobbered List

6);

Source code 2.1: GCC Extended inline assembly.

The extended ASM function is composed of three parts: The first is a
string of assembly language instructions, the second is a list of input and
output variables and how GCC should manage them, and the third is a list
of elements clobbered by the execution of the assembly instructions. The
input and output lists allow the use of external variables in assembly without
the need to think about register allocation. The clobbered list is needed
to inform GCC of what the assembly instructions change, for example the
contents of a register or memory locations. This is to prevent optimisation
that might break the code or cause corruption of the results [10].

Using SSE2 through the extended ASM function allows the programmer
complete control over which instructions to use, and how the data should
be modified, and it is easily interfaced with the surrounding code through
variables. Another important aspect of the ASM function is the possibility to
use the entire CPU instruction set, including instructions that are not part
of the SSE2 instruction set or the main programming language used. The
downside with ASM is that it requires knowledge of the assembly language
used by the target platform and its CPU architecture.

2.2.2 Vectorisation

Vectorisation means transforming the data and operations of the program in
question from a scalar form to a vector form [11]. The difference between a
scalar and a vector operation is that a scalar operation only works on a single
piece of data at a time in a sequential fashion, whereas a vector operation
works on two or more pieces of data at a time in parallel.

Usually the most important construct in a program as a candidate for
vectorisation is the loop construct [11]. In order to vectorise a loop, one
must unroll the loop with an unroll length corresponding to the length L
of the vector, and insert vector instructions instead of scalar instructions.
Thus, for each iteration of the loop, the processor can make L computations
in parallel instead of a single computation.

There are restrictions on which parts of a program that may be vec-
torised, however. Most importantly, there must be no dependencies between
the pieces of data that are computed in parallel. That is, if four pieces of

2.2 Utilising SSE through GCC 19

data a, b, c, d are computed in parallel, but the computation of c depends on
the result of a, then these four computations will not be able to be computed
in parallel.

GCC has automatic vectorisation capabilities that allow it to vectorise
some patterns of code [12]. These include support for computations of arrays,
both single-dimensional and multi-dimensional.

Using GCC’s vectorisation capabilities is in most cases enough to vec-
torize loops or small blocks of code, but there are certain loops it does not
yet support, mainly loops without a clear end condition. In source code 2.2
for example, GCC is not capable of vectorising the loop because the end
condition can not be computed beforehand [12].

1 while (*p != NULL){

2 *q++ = *p++;

3}

Source code 2.2: Loop without specific end condition. [10]

These requirements force the programmer to actively format the compu-
tations in a way that is suitable for GCC to vectorise. Doing this requires
knowledge about how GCC optimises the source code, and how the vectori-
sation routines work, in addition to eliminating data dependency, and the
only way to determine if the result is as expected is to read the generated
assembly code.

2.2.3 GCC vector extensions

Another way of using SIMD through GCC is through its vector extensions.
These extensions make it possible to operate on vectors of data, defined using
the typedef keyword, in the same way as simple data types. An example of
this is shown in source code 2.3.

1❶ typedef int v4si __attribute__ ((vector_size (16)));

2
3 v4si vector_a , vector_b , vector_c;

4
5❷ vector_c = vector_a + vector_b;

6
7❸ vector_c = vector_a + 1;

Source code 2.3: GCC vector extensions. [10]

A vector is defined at ❶. The size of the vector is defined as sixteen bytes,
which is divided into a number of integers. If the implementation uses four
bytes for the int data type, then the sixteen byte vector, would be divided
into four units, each with a size of four bytes. This new type is then used
to instantiate variables which can be used like simple data types. This is
shown at ❷ where two vectors are added together. The compiler translates
the addition into suitable packed data types and SSE instructions, and the
result is then assigned to vector c. The vector data types can also be used
together with simple data types. At ❸, for example, a scalar is added to
vector a. This scalar is expanded into a vector corresponding to vector a

before they are added.
This extension is simple to use, since it lets GCC handle the SIMD

implementation through code generation. The extension unfortunately only
supports simple mathematical and binary operators at the moment. The

20 Analysis 2

same problem which was present when utilising GCC’s vectorisation is also
present here, which is that it is not possible to ensure that the SIMD code
generated by GCC is as intended without reading through the assembly
language code generated [10].

2.3 Manual optimisation of code using SSE instruc-
tions

Returning to the code examples from section 1.1.1 we will apply a simple
and small optimisation using the SSE instruction set. In source code 2.4
we show an optimised C inline x86-64 assembly code implementation of the
vector addition in source code 1.2 using the SSE instruction set.

1 void vectorAdd_SIMD(int n, int src[n], int dest[n]) {

2 __asm__(

3 // rsi is the loop counter and is set to zero

4 "xor %%rsi ,%%rsi\n\t"

5 // Let rcx and rdx point to A and B respectively

6 "movq %[A],%%rcx\n\t"

7 "movq %[B],%%rdx\n\t"

8 ".additionloop :\n\t"

9 // Load [A+4i] into xmm0

10❶ "movups (%%rcx ,%%rsi ,4) ,%%xmm0\n\t"

11 // Add [B+4i] to xmm0

12❷ "addps (%%rdx ,%%rsi ,4) ,%%xmm0\n\t"

13 // Move result into [B+4i]

14 "movups %%xmm0 , (%%rdx ,%%rsi ,4)\n\t"

15 // Determine whether to continue loop

16❸ "addq $4 ,%%rsi\n\t"

17 "cmp %[n],%%esi\n\t"

18 "jl .additionloop\n\t"

19 : "=m" (*dest)

20 : [n] "r" (n), [A] "m" (src), [B] "m" (dest)

21 : "cc", "%rsi", "%rcx", "%rdx", "%xmm0", "memory"

22);

23}

Source code 2.4: SSE variant of code example 1.2.

In the code example in source code 2.4 it is assumed that n is a multiple of
4. This particular implementation unrolls the arrays by 4 ❸ to ensure that
the XMM0-register is properly filled ❶ during each iteration. The addps ❷
effectively adds four 32-bit integers, stored from [B+4i] and 128 bits ahead,
to the four 32-bit integers within XMM0. Thereby we see that we apply a
single instruction to multiple data.

2.4 Branching

Modern microprocessors are designed with pipelines to enhance their per-
formance. Pipelines allow the processor to fetch and decode the next set
of instructions while another is being executed. A problem when using a
pipelined processors is branching. If there is only one pipeline in the pro-
cessor then it has to predict which branch to fetch instructions from. If the
processor mispredicts which way the branch goes, then the pipeline has to
be flushed and the instructions from the correct branch have to be fetched.

2.4 Branching 21

This is costly since the cycles used when filling the pipeline were wasted
[13, 14].

Branching is even more expensive when using SIMD, since branching
does not exhibit parallel behaviour, as the comparison of elements from
multiple packed data type could give different results. Implementing nor-
mal compare/jump branching with packed data types would then require
each element to be computed individually, with a substantial performance
decrease as a result, in addition to the possibility of branch misprediction
[15].

2.4.1 Masking

Masking is a way of circumventing the problems of branching, while still
maintaining the performance benefits gained through SIMD [16]. A mask is
essentially a crafted sequence of bits, which is used to alter data elements
with the use of bitwise operations. Using masking solves the problem with
parallelism and the pipeline. Masking does not make use of the pipeline,
and there is therefore no chance of a mispredict and subsequent flushing of
the pipeline. Since masking is done with simple operations, it also does not
impose any significant performance loss.

Utilising masking instead of branching allows us to compare multiple
equally sized packed data types, value by value in a single instruction, with
a mask as a result. The bit sequence of the mask is the result of the compar-
ison, where bits corresponding to elements which passed the comparison are
set to one, and bits corresponding to elements that failed the comparison are
set to zero. The mask can then be used together with bitwise instructions
to include or exclude elements in the packed data type from computations,
by setting them to zero.

Figure F2-4: Masking in practice. [15]

22 Analysis 2

Figure F2-4 illustrates the use of masking to combine two packed data
types according to a comparison. Here the first and last elements of the
packed data type are true according to the comparison, so the entire bit
sequences of these elements are set to ones, while the comparison of the two
middle elements was determined to be false and their bits are set to zero.

A bitwise AND is then used to make a new packed data value with the
elements from packed data type a that passed the condition, and a bitwise
AND NOT to choose the elements from b that passed the condition. A
bitwise AND NOT is used since the mask created corresponds to the elements
in a, so the elements in b that passed the condition must correspond to those
that failed in a. The bit mask could also be used on other packed data values
than the ones used to create it, if for example we only wanted to add values
to the elements that passed a condition, or choose elements in one packed
value based on the what values another one contained.

Using masking allows us to determine computations dynamically at run-
time, without the drawbacks of branching, and is in many cases a necessity
in order to utilise SIMD without resorting to sequential scalar computations.
[17, 16]

2.5 Existing solutions

In this section we will look at existing parallel programming languages in
order to gain some knowledge and inspiration from them. This is done to
get a better understanding of the focus of this report and get inspiration
as to how we would like the languague of this project to be. We have
found a collection of languagues that utilise SIMD in a varity of ways. Key
parallel language features are going to be described and analysed. Before
these parallel languages are represented, terminology about different forms
of parallelism in software development is explained to specify the routes a
parallel programming language can take.

2.5.1 Terminology concerning parallelism

On the topic of parallelism, we distinguish between two forms of parallelism.

Data parallelism is a form of parallelism in which the same operations are
applied to different data items at the same time. The amount of paral-
lelism is thus scalable, since it can be expanded to include more units
of data.

Task parallelism on the other hand works by performing a number of tasks
in parallel. Task parallelism does not scale as well as data parallelism,
since the only way to increase the amount of parallelism is to divide
the program into smaller parts that may be run parallel, which is not
always possible.

Thus, data parallelism is concerned with data while task parallelism is con-
cerned with processes. In reality, however, most parallel programs are a
hybrid of the two. In this report have we have scoped down to focus on
SIMD. This means that our focus will mostly be on data parallelism, since
that is the kind of parallelism that is supported by SIMD. [18]

2.5 Existing solutions 23

In addition, parallelism can be further categorised with regards to who
is responsible for declaring and handling the parallelism of a given program
[18].

Implicit parallelism means that only the hardware is responsible for making
use of parallelism, possibly with the compiler helping to make the code
more easily run in parallel.

Explicit parallelism means that the programmer, through constructions in
the language, is responsible for declaring where in the code the compiler
should make use of parallelism.

In our programming language, we wish to exploit explicit parallelism so that
it is easier for the programmer to make use of parallelism while designing
the language in such a way that the programmer is encouraged to structure
his or her code in a fashion that is easy for the compiler to translate into a
format that utilises data parallelism.

2.5.2 Parallel languages

Some programming languages contain features that makes data parallelism
easier to use for the programmer through the platform’s SIMD instructions.
This is mostly done either by refactoring code when compiling the program,
as in implicit parallelism, or by implementing special data types and func-
tions to create an abstraction from the underlying hardware implementation,
as in explicit parallelism. The following is a brief explanation of some dif-
ferent approaches to data parallelism that these languages use.

2.5.2.1 NESL

NESL is a programming language that was designed to make parallel pro-
gramming easy [19], much like the programming language we envision.

The main construct in NESL is the sequence, which is very similar to
an array in other programming languages. A sequence is defined with its
elements between brackets:

[2, 5, 8, 4]
The preceding sequence contains four elements: 2, 5, 8, and 4. One of the

main features of NESL is the ability to apply operations to all the elements
of a sequence in parallel using an apply-to-each construct. These can be
operations such as arithmetic operations or printing strings in reverse [19].

1{a + b : a in [3, -4, -9]; b in [-11, 2, 3] | a > 0 and b

< 0};

Source code 2.5: Addition of values in sequences with conditions in NESL.

An example of NESL code can be seen in source code 2.5. In this example,
the elements of the two sequences a and b are added together in parallel. The
arguments after the pipeline give restrictions as to which elements are used.
In this example, only values from the sequence a that are larger than 0 are
used. Likewise, only values that are less than 0 are used from b. This means
that only 3 from a and −11 from b are added together, returning a sequence
[−8].

24 Analysis 2

2.5.2.2 ZPL

ZPL is an array programming language designed with performance in mind
[20]. The main construct in ZPL is the n-dimensional array. One of the
main features of ZPL is its region property that forces the programmer to
specify the dimensions of the arrays that is being worked on in a given part
of the program. These regions can additionally be modified throughout a
program to work on different parts of a matrix.

In ZPL, the programmer will not have to specify how parallelism is to
be performed in the program. Rather, parallelism is automatically provided
for many of the constructs of the language when it is compiled. [21] It has
two different types of array: One type that does not support parallelism
but allows for indexing, and another type that supports parallelism but does
not allow indexing. Any operations on arrays that support parallelism are
automatically vetorised by the ZPL compiler.

1 program main;

2
3❶ config var

4 n : integer = 2;

5
6 region
7 R1 = [1..n, 1..n];

8 R2 = [1..10 , 1..10];

9
10 direction
11 right = [0 ,1];

12
13❷ procedure main();

14 var

15 A : [R1] integer;

16 B : [R2] integer;

17 C : [R2] integer;

18
19❸ [R1] begin

20 A := 1;

21 B := 2;

22
23❹ C@right := A + B;

24
25❺ writeln(C);

26 end;

Source code 2.6: Addition of arrays with ZPL.

An example of ZPL code can be seen in source code 2.6. In this example,
two arrays are added together and the result stored in a third array. In
the declaration section at ❶, an integer n, two regions R1 and R2, and a
direction right are defined. Note that region R2 is larger than R1. Within
the main procedure at ❷, A is initialised with region R1 whereas B and C
are initialised with region R2. When not initialised with a value, scalars and
arrays are set to one by default in ZPL. At ❸, R1 is used as the region from
then on. This means that any assignments or computations done on arrays
within this section will only be done on the part of the arrays in question
corresponding to the region. So for this example, only the first 2×2 elements
of any array will be used. All of these elements are set to one in A and to two

2.5 Existing solutions 25

in B. At ❹, the right direction operator pushes all operations one step to
the right, as defined in the declaration section. This means that the result of
the additition will be stored in the entries (1, 2), (1, 3), (2, 2), (2, 3) (assuming
a 1-based matrix).

Thus, when the array C is printed at ❺, and the direction operator is
no longer used, the entries (1, 1), (1, 2), (2, 1), (2, 2) are printed, yielding the
results 0, 3, 0, 3, respectively.

2.5.2.3 Mono

Mono, the open source version of .NET and C#, lets the programmer con-
trol more explicitly when data should be computed in parallel compared
to ZPL and NESL. Mono includes vector classes that contains methods for
the different SSE instructions. This approach gives the programmer control
over how the instruction are utilised, but forces them to learn yet another
language construct to use it.

1 using System;

2 using Mono.Simd;

3
4 static class MainClass

5{
6 public static void Main()

7 {

8❶ Vector4i v1, v2, v3;

9 Vector4f v4, v5;

10
11 v1 = new Vector4i(1, 2, 3, 4);

12 v2 = new Vector4i(4, 3, 2, 1);

13 v3 = new Vector4i(3, 5, 7, 11);

14
15❷ v1 = v1 + v2;

16 v3 = v2 * v1;

17
18 v4 = new Vector4f (16, 25, 100, 1225);

19 v4 = new Vector4f ((float) 89.98, 2, (float) 45.9,

20 (float) 13.17);

21
22❸ v4 = v4.Sqrt();

23 v5 = v5.CompareLessThan(v4);

24 v4 = v5 & v4;

25
26 System.Console.WriteLine(v4);

27 }

28}

Source code 2.7: Various SIMD operations implemented in Mono.

In order to more easily facilitate SSE operations, C# is expanded with
types corresponding to the packed data types defined in the CPU architec-
ture, these are declared at ❶. These can be used to perform normal scalar
operation, on the multiple elements contained in the vector as seen at ❷.
Mono’s implementation also implements some of the more advanced features
of SSE as C# extension methods. These are used at ❸ to compute the square
root of v4.

This makes the instructions more accessible, since the programmer is
not forced to remember assembler instructions, and makes the instructions

26 Analysis 2

available through an object oriented interface [22].

2.5.2.4 EXPAND

A third solution to this problem was proposed by Jaewook Shin and de-
scribed in the paper Programming by Expansion [23]. The paper describes
the developed EXPAND compiler, which uses the same language for both
input and output, in this case the C programming language. The EXPAND
compiler reorganizes the code at the function level, and substitutes scalar
operations with vector equivalents, so that it is easier for the real C compiler
to create code utilising the SIMD instructions. This should in theory allow
the programmer to write code with minimal consideration for SIMD, and
then let the EXPAND compiler generate functions capable of using SIMD,
which the programmer then can tune to their liking before compiling to
machine code.

2.6 Compiler construction tools

When crafting a compiler, it is possible to craft a custom and hand-made
lexical analyser as well as a parser, but this is a very time-consuming process,
as well as being prone to human error. There are several tools available which
facilitate these steps. By using such tools, a lot of the process is automated.
This saves time because of the fact that the lexer and parser do not need
to be hand-written and debugged. The language is instead simply defined
by a set of regular expressions and Backus-Naur derivation rules which the
tools use to generate the necessary code. There is a need to create a lexer
that recognizes strings to see whether or not all inputs are acceptable in
our programming language. Then a parser needs to be generated to see
whether or not all the input strings are written syntactically correct. Lastly,
an Abstract Syntax Tree (AST) can be created with the help of the parser,
to facilitate semantic analysis, code optimisations and code generation. In
the following, we will look at a selection of available tools and give a brief
description of each.

2.6.1 Tool suites

There are several different approaches to all these different steps. One ap-
proach is to have two different tools: One that generates the lexer, another
that generates the parser, and lastly there are tools which are capable of
both, generating both a lexer and a parser. Depending on which tool suite
is used, the AST is created as well. If the AST is not automatically created
by the parser, it is often possible to do so by assigning action commands
to each production in the grammar. This means that it is possible to run
specific commands whenever a production is met, such as creating instances
of a class and assigning values to these classes.

A very well-known parser generator suite is called SableCC [24]. This
suite produces a LALR parser by defining tokens with regular expressions
and then describing the grammar in Extended Backus–Naur Form (ENBF).
This is one of the tools that automatically creates an AST. This is done by
giving specific names to each possible production in the language’s grammar.
This way it is possible for the parser to create AST nodes from these names.

2.6 Compiler construction tools 27

Another well-known parser generator suite is called JavaCC [25]. This
is similar to SableCC in that it creates a parser and lexer from regular ex-
pressions and ENBF to describe the grammer. The main difference though,
is that JavaCC is a top-down parser and thus limits the class of applica-
ble grammars to LL(k) grammars. It also does not automatically create an
AST, which is done using another tool called JJTree in combination with
JavaCC.

The last tool suite we have looked at is a suite called Coco/R [26]. This
tool suite is very similar to JavaCC as it creates a top-down parser from an
LL grammar. One difference between the two, is that Coco/R is limited to
the LL(1) class of languages, and does not create an AST automatically, nor
by an external tool. The AST is instead created by writing action code in
the grammar itself.

2.6.2 Standalone tools

Another approach to lexer and parser generation is to generate the lexical
analyser and the parser independently and then link them together by mak-
ing the lexical analyser conform to the standards imposed by the parser.
Then, action commands would be inserted into the parser in order to gen-
erate the AST.

One of the most commonly used lexer generators is one called Lex, which
was developed by AT&T [27]. Lex generates a lexer from a set of regular
expressions defined by the user. Flex is another lexer generator which stands
for Faster Lexical Analyser [28]. Flex generates a lexer in C, but there exists
other versions of the program like JFlex, which is a Java version.

After generating a lexer, a parser needs to be generated. Usually the
parser is built at the same time as the lexer because the parser is usually
capable of creating a symbol table for the tokens that the lexer can use
when reading input [29]. This means that the tokens are defined in the
parser generator which then creates a symbol table for the lexer to use.

For this job there are two well known parser generators: CUP and Byacc.
These tools are both fully compatible with JFlex and Flex, respectively. By
telling Flex or JFlex to comform to Byacc’s or CUP’s standards, no further
work is required in order to make both programs work with each other [30].
Both parser generators are actually rather similar, and use a Context-Free
Grammar (CFG) written in a BNF-style syntax. They both also use action
code to define the construction of the AST [29].

28 Analysis 2

CHAPTER 3
Design decisions

In this section we will define further restrictions in order to scope our prod-
uct, namely the compiler for our programming language.

As described in section 2.1, there are several extensions to SSE, but all
the instructions that we are interested in using are available in SSE2, and
since SSE2 is an older extension than SSE4 and thus more widely used,
we have to chosen to focus on the SSE2 instruction set. Since we will be
focusing on utilising SSE2 instructions to perform computational intensive
operations in our compiled programs the target platform will obviously have
to support this technology.

We will write our compiler in Java, but the compiler will not produce
code that will be interpretable by the Java Virtual Machine (JVM). Instead
our compiler will produce C code with inline x86-64 assembly code which
should be compilable by GCC. This may seem like a peculiar match, and in
the following sections we will account for our choices.

3.1 General language design decisions

Our analyses of existing implementations of data parallelism and specifically
SIMD showed that each had both pros and cons associated with them. ZPL,
which we described in 2.5.2.2, allows the programmer to just write their
programs without thinking about how the results are computed. This makes
it very easy to utilise, but very hard to define how specific computations
are handled. The approach of Mono that is described in section 2.5.2.3
allows the programmer to specify when to use parallelism, and partially how,
which gives the programmer more control over how the instructions are used.
Jaewook Shin’s compiler which is described in section 2.5.2.4, should allow
the programmer to write programs without worrying about using parallel
constructs, and let them specify how the instructions are used by modifying
the output from the EXPAND compiler, but the tool has to be both reliable
and effective for this approach to be useful.

We have chosen, on account of the analyses, to make a data parallelism
programming language intended for large computations that is inspired by
NESL and ZPL, while maintaining a C-like syntax as seen in Mono’s imple-
mentation. This should allow the programmer to focus on problem solving,
instead of the actual implementation, while still utilising the possibilities of
the target platform. As such, our language is intended as an abstraction
from the low-level implementation of the instructions that facilitate data
parallelism.

30 Design decisions 3

3.2 Compiler implementation language

We have chosen Java as the implementation language for our compiler sim-
ply due to the Language and Compilers course we are following alongside
this project. The course encourages us to use Java, because Java is the
language predominantly used when illustrating and introducing various con-
cepts throughout the course. Furthermore the compiler generation tools
we have been introduced to in the course have mainly been in their Java
versions. These tools, and a couple more, are described in section 2.6.

None of us have any previous experience with Java and this project
therefore provides a golden opportunity to familiarise ourselves with Java
and take some of the theory regarding the compiler tools from the course
and employ it in practice.

3.3 Target language

We have chosen to use the C programming language and GCC as the target
platfom for our compiler. This is because we already are familiar with the
language and the use of GCC allows us to write assembly code interchange-
ably with ordinary C code, using its extended inline assembler extension, as
seen in section 2.2.1. Using this as our target platform has several advan-
tages:

1) It gives us easy access to SSE2 instructions.

2) The compiler handles most stack management.

3) Non-parallelisable code can be implemented using C.

Furthermore C is often regarded as “the universal assembly language” [31]
due to the efficiency and low-level nature of the language. However the main
argument for choosing C as target language is the support for embedded
assembly code, which allows us to combine the low level instructions with
some higher level C constructs.

We have chosen to only focus on the 64-bit version of GCC , thus we
will only provide support for the 64-bit platform. Even though the compiler
will be written in Java, we do not want to provide support for any operating
systems beyond 64-bit Linux. Thus we do not intend to support software
emulation or ports of GCC on Microsoft Windows, Mac OS X, Haiku, etc.

3.4 Parser generator

Our main reasons for using Coco/R are that it contains all the functionality
we need in one program, is able to create Java code, has an easy-to-use
input format, and creates more readable code than most of the alternatives
we have looked at in section 2.6.

The reason for wanting a single tool to handle every aspect of the lexer
and parser generation process is that multiple programs with different in-
put and output formats seem like an unnecessary hassle, as changes in the
language might require changes in multiple different files, and then running
them through their respective tools. Having the entire language in one file
also makes it more manageable to correct errors, as the entire definition can

3.4 Parser generator 31

be seen. Coco/R uses ENBF as input, which makes it both very easily read-
able and writable, as we have previous experience using this format from our
courses. The tool has to support Java, as it is our implementation language
of choice, as described in section 3.2. We want the tool to create code that
we are able to relatively easily understand in order to make it easier to inte-
grate it with the rest of the compiler, which would have been much harder
to do if the generated code was hard to understand.

The main drawback of using Coco/R is that it creates a recursive descent
parser from an LL(1) grammar. This puts some constraints on our grammar,
compared to other classes of languages, since LL(1) is a fairly small class of
languages. However, the language constructs for our language are possible
to handle with an LL(1) parser with only a few workarounds, so this is not a
hindrance. Coco/R also does not automatically create an AST; this has to
be done manually by writing Java code inside the grammar. This obfuscates
the grammar, but saves us from writing it again every time the parser has
to be regenerated, due to errors or changes in the language.

32 Design decisions 3

CHAPTER 4
Language design

In this chapter we are going to document the language we have designed and
which we call CIP Computing in parallel (CIP). First we will introduce our
language philosophy to make clear what we want to achieve and what the
general idea behind the language is. Then parts of the operational seman-
tics are reviewed, which consists of the abstract syntax for our language and
the array semantics that we have chosen to implement. After this we will
examine our language’s formal and informal grammar, our choice of scope
and type rules, then go through interesting constructs with some code exam-
ples. Lastly, this chapter will cover some of our previous design ideas that
have been modified or removed and why this modification or removal was
performed.

4.1 Design philosophy

The main focus of our language is to utilise data parallelism without encum-
bering the programmer with special keywords to specify parallel behavior,
and let them use a syntax that is similar to many of the existing program-
ming langauges as discussed in section 3.1. This allows for the programmer
to focus on being productive and minimize the time needed to learn the new
language.

This is done mainly by using a C-like syntax with procedures, assign-
ments and declarations, but made more verbose to enhance readability by
using keywords to specify the beginning and end of the various construct, a
feature inspired by the ZPL programming language. Another design choice
directly influenced by the use of data parallelism is how our language han-
dles arrays as they are considered first-class citizens as inspired by ZPL and
therefore can be used as parameters for procedures and assigned to vari-
ables. One exception is that arrays can not be sent as return values from
procedures. This is due to implementation issues that are further discussed
in section 7.2. These variables can then be used directly in computations by
specifying the indexes involved. How these computations then are executed
on the underlying platform is handled by the compiler.

4.2 Operational semantics for CIP

In this section we will describe the semantics for arrays in CIP. We will also
describe the abstract syntax and the environment-store model, both of which
are used in the description of the semantics.

34 Language design 4

4.2.1 The environment-store model

In our semantics we will use the environment-store model to describe the pro-
gram state. This model is a product of the work by Dana Scott and Christo-
pher Strachey on denotational semantics [32]. The environment-store model
can be regarded as an abstract model of a computer in that it describes how
variables and procedures are actually bound during a program execution:
Every variable is bound to a storage cell and the value of a variable is the
content of a storage cell [32].

The environment-store model makes use of three different sets to describe
the binding of variables:

1. Var ∪ next is the set of variables and next is a special pointer to the
next available location.

2. Loc is the set of locations.

3. Sto (shorthand for store) is the set of values.

We will distinguish between variable environment and procedural environ-
ment however they may both be regarded as functions given an argument
that returns the storage location to which it is bound [32]. One may think
of this function as a symbol table. The store is a function that takes a loca-
tion as input argument and returns the corresponding value found at that
location. Figure F4-1 gives a visual interpretation of the environment-store
model. The figure shows that a variable maps to a location which in turn

Figure F4-1: Visual interpretation of the environment-store model

maps to a value. Furthermore it shows that aliasing is possible, as two vari-
ables may map to the same location. In our language that would be possible
if the variables are declared as arrays.

4.2.1.1 Sets and functions definitions

In this section we will describe and define the sets and functions that we use
to describe the semantics of our programming language.

Locations In the environment-store model we call storage cells locations.
We let Loc be the set of locations. Further we let l denote an arbitrary
element of Loc. For simplicity we will always assume that locations are
natural numbers, such that Loc = N. [32]

The special pointer next points to the next available location. This
pointer helps make sure that we do not unintentionally overwrite the content
of a storage cell when allocating new variables.

4.2 Operational semantics for CIP 35

With regard to Loc we will define the function new which is a total
binary function that given a location returns it successor

new : Loc→ Loc

Due to our definition of Loc as consisting of natural numbers, new may be
defined by

new(l) = l + 1

Environments A variable environment contains the symbolic names of
variables. We define the set of variable environments as a set of partial
functions from variables to locations:

EnvV = Var ∪ next ⇀ Loc

Furthermore we let envV denote an arbitrary member of EnvV. Given a
variable name as input envV returns its location. [32]

A procedural environment contains the symbolic names of procedures.
We define the set of procedural environments as a set of partial functions
that map procedure names to the Cartesian set of statements, variable en-
vironments, and procedural environments:

EnvP = Pnames ⇀ Stm×EnvV×EnvP

This definition implies static scope rules since EnvV and EnvP are the
environments known at declaration time.

We let envP denote an arbitrary member of EnvP. Given a procedure-
name as input it returns a triple.

Store A store simply contains values. We define the set of stores as a set
of partial functions that map locations to values:

Sto = Loc ⇀ R

Since we only have integer and floating-point data types in our language we
let stores only map locations to real numbers. In reality the set of real num-
bers is far greater than the set of values representable by our language’s data
types. Mainly because R is infinite, whereas the numbers in our language
are limited by hardware considerations. However for the sake of simplicity
we will use R as the range of values.

4.2.2 Abstract syntax

In this section we provide an abstract syntax for CIP. The abstract syntax
will be an abstraction of our CFG from appendix A. We will use a notation
similar to the one in [32]. Table T4-1 shows the syntactic categories for CIP
and table T4-2 shows the abstract syntax.

36 Language design 4

Syntactic categories
n ∈ Num Numerals
x ∈ Var Variables
s ∈ String Strings
y ∈ Array Arrays
a ∈ Arith Arithmetic expressions
A ∈ ArrayArith Array arithmetic expressions
S ∈ Stm Statements
p ∈ Pnames Procedure names
E ∈ Expression Expressions
DP ∈ DeclP Procedure declarations
DA ∈ DeclA Array declarations
DV ∈ DeclV Variable declarations

Table T4-1: Syntactic categories for CIP.

Formation rules
a ::= n | x | (a1) | y[a]

| a1 + a2 | a1 − a2 | a1 · a2 | a1/a2 | a1 mod a2

| a1 AND a2 | a1 OR a2 | ¬a1 | a1 = a2 | a1 6= a2

| a1 > a2 | a1 ≥ a2 | a1 < a2 | a1 ≤ a2

A ::= | A1 + A2 | A1 −A2 | A1 ·A2 | A1/A2 | A1 mod A2

| A1 AND A2 | A1 OR A2 | ¬A1 | A1 = A2 | A1 6= A2

| A1 > A2 | A1 ≥ A2 | A1 < A2 | A1 ≤ A2 | (A1) | y | y[a1] :: [a2]

E ::=a | A
| A1 + a2 | A1 − a2 | A1 · a2 | A1/a2 | A1 mod a2

| A1 AND a2 | A1 OR a2 | ¬E1 | A1 = a2 | A1 6= a2

| A1 > a2 | A1 ≥ a2 | A1 < a2 | A1 ≤ a2 | (E1)

S ::= x := a; | y[a] := a; | while a S1 end | S1S2 | y := a; | y := A;

| if (a) S1 else S2 end | DV | DA | DP | p(E) | E
| print E ; | print s ; | println E ; | println s ;

DV ::= var x := a; DV | ε
DA ::= var x[a] := {a1..an}; DA | ε
DP ::= procedure p(var x) S end Dp | procedure p(var y) S end Dp | ε

Table T4-2: Abstract syntax for CIP.

We have chosen to use standard mathematical symbols within our ab-
stract syntax, because it is supposed to be more compact and easier to read
than our CFG. The operators (!,==, <=, >=,%) have been replaced with
(¬,=,≤,≥, mod). Furthermore, we have replaced the assignment operator
from our CFG with (:=) to avoid confusion with the equality operator (=)
in our abstract syntax.

Concrete data types have been replaced with the keyword var which can
mean any of the int and float data types in CIP.

4.2 Operational semantics for CIP 37

4.2.3 Operational semantics for arrays in CIP

In this section we will describe the semantics for arrays in CIP. We will also
show the semantics for procedure calls, since procedure calls with scalars as
parameters have different semantics from procedure calls with arrays as pa-
rameters. The semantics described in this section are based on the abstract
syntax given in section 4.2.2. In the semantics given here, we abstract from
some details and some operations are simplified, and these will be discussed
where applicable. For a full list of the semantic rules that we have chosen
to describe formally, see appendix C.

Figure F4-2: Visual interpretation of the environment-store model with ar-
rays

When array names are looked up in the variable environment, it returns
a single location, and the rest of the elements in the array must be accessed
through adding an index to the base location of the array. This can be seen
in the rules in figure F4-3 and figure F4-4.

In general, the semantics for arrays are that operations are performed
in parallel on a number of data elements at a time. The exact number of
data elements that are worked on at a time depends on the data type being
worked on. In the formal semantics given here, we will assume that four data
elements are being worked on at a time. It is straightforward to extend this
to more or fewer elements. Since both ints and floats are described with the
var keyword, we do not differentiate between the two in our semantics. In
our actual implementation, however, only ints are allowed as array indexes.

Data parallelism in CIP is only utilised when working on a row in an
array. This can be a part of a row, but it can not be multiple rows. If a
single element from an array is being worked on, the semantics are equiva-
lent to the semantics for scalars. In the semantics given here, we will only
describe arrays of one dimension, but it is straightforward to expand this
description to include multiple dimensions as long as one keeps in mind that
the parallel operations on arrays only work on rows. CIP includes a special
range operator :: which means that the array it is used on is only being
worked on from the element at the index of the left-hand side to the element

[ArrayLoc] envV , sto ` y →A l where envV y = l

Figure F4-3: Semantic rule for retrieving the location of an array.

38 Language design 4

[ArrayIndex]
envV , sto ` y →A l

envV , sto ` y[a]→a v
where sto l + a = v

Figure F4-4: Semantic rule for indexing an element in an array.

[RangeOp]

envv, sto ` y →A l

envv, sto ` y[a1] :: [a2]→A l′

where l′ = l + a1

Figure F4-5: Semantic rule for using the range operator.

at the index of the right-hand side. As an example,

A = B[2] :: [5]

assigns only the elements from index one to five of array B to array A. The
semantics of this operator can be seen in figure F4-5. Apart from looking up
the first location of the selected subarray, the compiler also sends information
about the length of the subarray, so that the code generator can work on
the correct number of elements.

The data parallelism of CIP can be seen in several of the semantic rules.
Looking at figure F4-6 and figure F4-7, we can see that when an array is
assigned to another array, four elements of the array being assigned from are
assigned to the array being assigned to at a time. Likewise, when a scalar
is assigned to an array, the scalar is assigned to all of the elements of the
array, four elements at a time.

For arithmetic expressions, we can see from figure F4-8 that when a scalar
is added to an array, this operation applies the scalar to all the elements of
the array, four elements at a time. Similarly, we can see from figure F4-9
that arrays are added to one another element by element in blocks of four
at a time. It is straightforward to extend these rules to include rules for the
remaining arithmetic expressions as they are similar except for the operation
being performed.

[ArrayArrayAss]

envV , envP ` 〈y := A, sto〉 →s sto[l1 7→ v1][l
′
1 7→ v2][l

′′
1 7→ v3][l

′′′
1 7→ v4]

where l1 = envV y and sto l2 = v1

and l′1 = new l1 and l′2 = new l2 and sto l′2 = v2

and l′′1 = new l′1 and l′′2 = new l′2 and sto l′′2 = v3

and l′′′1 = new l′′1 and l′′′2 = new l′′2 and sto l′′′2 = v4

Figure F4-6: Semantic rule for assigning arrays to other arrays.

4.2 Operational semantics for CIP 39

[ArrayScalarAss]

envV , envP ` 〈y := a, sto〉 →s sto[l 7→ v][l′ 7→ v][l′′ 7→ v][l′′′ 7→ v]

where envV , sto ` a→ av and envV y = l

and l′ = new l and l′′ = new l′ and l′′′ = new l′′

Figure F4-7: Semantic rule for assigning scalars to arrays.

[ArrayScalarAdd]

envV , sto ` A→A l envV , sto ` a→a v2
envV , sto ` A + a→E V

where v1 = sto l and v[0] = v1 + v2

and l′ = new l and v′1 = sto l′ and v[1] = v′1 + v2

and l′′ = new l′ and v′′1 = sto l′′ and v[2] = v′′1 + v2

and l′′′ = new l′′ and v′′′1 = sto l′′′ and v[2] = v′′′1 + v2

Figure F4-8: Semantic rule for adding scalars to arrays.

[ArrayArrayAdd]

envV , sto ` A1 →A l1 envV , sto ` A2 →A l2
envV , sto ` A1 + A2 → V

where v1 = sto l1 and v2 = sto l2 and V [0] = v1 + v2

and l′1 = new l1 and l′2 = new l2

and v′1 = sto l′1 and v′2 = sto l′2 and V [1] = v′1 + v′2

and l′′1 = new l′1 and l′′2 = new l′2

and v′′1 = sto l′′1 and v′′2 = sto l′′2 and V [2] = v′′1 + v′′2

and l′′′1 = new l′′1 and l′′′2 = new l′2

and v′′′1 = sto l′′′1 and v′′′2 = sto l′′′2 and V [3] = v′′′1 + v′′′2

Figure F4-9: Semantic rule for adding an array to another array.

40 Language design 4

4.3 Our language

In this section we are going to look at the interesting constructs that CIP
provides the programmer with. The language we have made is much like
C and ZPL, as it is loosely based on the two and on the considerations in
section 3.1. The CFG of CIP can be found in appendix A. For full examples
of programs written in CIP, see appendix B. The following sections use
fragments from the code in the appendix to exemplify the discussion.

4.3.1 Arrays in CIP

All operations on more than a single element in CIP of an array must be
done using the range operator ::. This construct provides the programmer
with the ability to operate on selections of multidimensional arrays as is
shown in source code 4.1. This operation is done using the operator :: with
the from-selection operand on the left side and the end-selection operand on
the right side.

1 int8 Array2 [3] = {4,5,6};

2 int8 Vector [3][1] = {{7} ,{7} ,{7}};

3 int8 Matrix [3][3] = {{1,1,1},{1,1,1},{1,1,1}};

4
5❶ Matrix [2][0]::[2] = Array2 [0]::[2];

6❷ Matrix [1][0]::[2] = Matrix [0][0]::[2] *

7 Matrix [2][0]::[2][2];

Source code 4.1: Multidimensional array indexing in CIP.

The indexing operand describes a specific location in an array by denoting
a specific element in each dimension as seen in source code 4.1. When used
together with the :: operator, this denotes an area of the array that is
stretched between the two locations. This area must be a subsection of a
single array dimension, so the range operator can not be used across several
dimensions.

Figure F4-10: Multidimensional array selection example.

The grey area in figure F4-10 is a selection made to the multidimensional
by the command Matrix[0][0]::[2]. By using this range operator, it is possible
to use binary operators with arrays of different dimensions as operands,
because it is possible to select an appropriate part of an array, thus allowing
the programmer to operate on a smaller part of a larger array. In source
code 4.1, we operate on a part of the array Matrix ❶, where the array Array2

is assigned to the bottom part of Matrix, as shown in figure F4-11.
After this we multiply the bottom row in Matrix with the top row elements

and assign the result to the middle row of the array ❷, as shown in figure
F4-12.

4.3 Our language 41

Figure F4-11: Assigning a small array to the bottom row of another array.

Figure F4-12: Multiplying parts of an array with itself in CIP.

4.3.2 CIP binary operators

The second interesting construct we are going to document is how it is pos-
sible to use binary operators with arrays as seen in source code 4.2 with the
arithmetic multiply operator and the relational less-than operator as exam-
ples. The binary operators in CIP operate on each individual element of the
arrays and return an array of the same size with each element correspond-
ing to the result of the operation. To use binary operators with arrays as
operands, the array dimensions must be equal.

1 int8 Array1 [3] = {1,2,3}, Array2 [3] = {4,5,6};

2
3 // assigns {4,10,18} to Array1.

4 Array1 = Array1 * Array2;

5
6 // assigns {0,1,1} to Array1.

7 Array1 = Array1 > Array2;

Source code 4.2: Binary operators with arrays as operands in CIP.

4.3.3 CIP unary operators

The last construct we are going to describe is how it is possible to use unary
operators with arrays as seen in source code 4.3 with the arithmetic negation
operator and the logic not operator as examples. The unary operators in
CIP operate on each individual element of the arrays and return an array of
the same size with each element corresponding to the result of the operation.

1 int8 Array1 [3] = {0,1,1};

2
3 // returns array [3] = {1,0,0}.

4 Array1 = !Array1;

5
6 // returns array [3] = {-1,0,0}.

42 Language design 4

7 Array1 = -Array1;

Source code 4.3: Binary operators with arrays as operands in CIP.

4.4 Contextual rules

In this section we will define the type and scope rules for our language.

4.4.1 Type rules

In our programming language we have two primitive types, int and float,
and one composite type, array.

Both the primitive types can have different sizes. Int types can be int8,
int16, int32, or int64, where the number denotes the size of the data type
in bits. If declared with no suffix, an int will have a size of 32 bits. More
information about our ints can be found in table T4-3. Float types can
be float32 or float64, with the default being 32 bits. More informationen
about the float datatypes is found in table T4-4. Arrays can contain all the
different primitive datatypes, but only one defined datatype at a time.

We have chosen these primitives as datatypes for our languauge because
they have to match the SIMD instructions which operates on datatypes of
these sizes [8]. It is logical that it would be an unnecessary workload to
convert the datatypes from incompatible types to SIMD compatible types.

Bits Name Range Decimal
Digits

8 int8 −(27) to 27 − 1 3

16 int16 −(215) to 215 − 1 5

32 int32 −(231) to 231 − 1 10

64 int64 −(263) to 263 − 1 19

Table T4-3: Overview of the different int sizes in CIP on a 64-bit Linux
machine using GCC.

Bits Name Exponent Significand Exponent bias Bits precision

32 float32 8 23 127 24

64 float64 11 52 1023 53

Table T4-4: Overview of the different float sizes in CIP on a 64-bit Linux
machine using GCC.

4.4.1.1 Type checking

Type checking is ensuring that the operands of an operator are compatible
types. A compatible type is one that is legal for the operator or allowed under
the language to be implicitly converted by the compiler in the generated code
to a legal type. Such an implicit approach is called coercion. An example
could be if an int and a float variable are added in Java, the value of the int
is coerced to a float and a floating-point addition is done. If an operand is
not a compatible type, a type error occurs.

4.4 Contextual rules 43

There are two different kinds of type checking: static type checking and
dynamic type checking. Static type checking reduces the risk of run-time
errors since the types are statically bound and cannot change throughout
the program. They will be checked at compile-time and if any errors are
detected, the program will not compile.

On the other hand, dynamic type checking allows for more flexibility
for the programmer, because the types can be changed at run-time as they
are dynamically bound, but can lead to more run-time errors if not used
carefully.

Since we have no run-time environment for our programming language,
we use static type checking and static type binding. In order to avoid both
loss of precision and data overflow, we do not allow either explicit or implicit
casting between our two primitive types. Within each primitive type, how-
ever, we allow implicit casting from a smaller bit representation to a larger
bit representation, for example from an int8 to an int16. We do not allow
casting from a larger bit representation to a smaller.

4.4.2 Scope rules

Like with type checking and binding, there are two different kinds of scope
rules: static scope rules and dynamic scope rules. With static scope rules, a
procedure is called with the bindings that were known when the procedure
was declared, whereas dynamic scope rules use the bindings known when the
procedure is called. [32] This is shown as pseudo-code in source code 4.4.

1 String y = "global";

2
3 function print_y () {

4 print(y);

5 }

6
7 function test_scope () {

8 String y = "local";

9 print_y ();

10 }

11
12 test_scope ();

13 // Statically scoped languages print "global ".

14 // Dynamically languages print "local".

15
16 print_y ();

17 //All languages should print "global ".

Source code 4.4: Static and dynamic scope rule example in pseudo-code
[33, 31].

In our language we use static scope rules. In addition, it is possible in
our language to look outside a scope to higher scopes, but not to look into
lower scopes. So if a variable y is used in a scope where it is not declared,
the compiler will look for a variable y in the outer scopes, and use that y
which is in the lowest of its outer scopes. This also means that side effects
are possible in our functions.

44 Language design 4

4.5 Language changes

Changes to the language were made throughout the project, either because
the original construction had some undesirable aspects, or because they be-
came unnecessary in their current form as the language evolved.

The following section describes the various changes made to the language,
as part of the development process, with the reasoning behind the changes
and the effect they had on the overall language as its primary focus.

4.5.1 Redesigned features

The following elements in the language were changed after their initial design
was finished. This was due to the introduction of procedures in the language,
which effected some already established elements, along with problems un-
covered while developing programs in the language.

4.5.1.1 Array declaration

Declaration of arrays was originally done using the dims keyword. This al-
lowed assignments to specific elements in the array to be done at the decla-
ration. The following would, as an example, assign four to the third element
of a one dimensional array of ten integers:

int dims[10] SmallArray[3] = 4;.

This was contrary to many of todays popular languages like C and Java
[34], where arrays declarations does not require a special keyword, just that
their dimensions are defined as suffix to their name. This of course does
not allow the above assignment, but as most uses of arrays require that all
of its elements are declared, and not just a single element, we decided that
it would be preferable to make array declarations more akin to the popular
languages in order that existing programmers may learn it more quickly.

4.5.1.2 Array dimension

Specifying the dimensions of an array was originally done using square brack-
ets, where the size of each dimension was separated with a comma, so for
example a 3× 3× 3 array would be written as [3,3,3]. This unfortunately
was a problematic construction when used to only define dimensions, as was
needed when an array was used as parameter for a procedure. As the follow-
ing example shows, it was unnecessarily difficult to quickly see the number
of dimensions of an array, when the numbers denoting the precise size was
not present:

procedure int ArrayElementSum(int[,,] input).

The procedure would accept any array with three dimensions, and return a
single int. The use of square brackets and commas to denote this, although
consistent with the declaration of dimensions in arrays, gives the immediate
impression that the procedure accepts a two-dimensional array since there
are two commas. The problem is further worsened when arrays with many
dimensions are used, as it can be hard to determine the number of com-
mas effortlessly. To alleviate this problem, we decided to use sets of square

4.5 Language changes 45

brackets to denote the number of dimensions. Using this method the above
procedure would be

procedure int ArrayElementSum(int[][][] input).

This makes it much easier to read, because of its larger size, at the cost of
some writeability. This change also makes our language more like popular
languages already in use, which should make learning our language easier
for existing programmers [34].

4.5.1.3 While loop

As our language originally contained multiple loop constructs as described
in section 4.5.2.1, we decided to unify them by prefixing them all with the
repeat keyword. But after the repeat until loop was removed from the
language, the use of the repeat keyword became unnecessary as the language
now only contained a single loop construct. We then decided to change the
while loop from repeat while to just while, which made it quicker to write
and still keeps it obvious what the functionality of the construction is.

4.5.1.4 Multidimensional ranges

Originally we wanted to allow array operations on multiple dimensions of
an array at a time instead of just on a single row at a time as is currently
required. If multidimensional ranges were allowed, it would be possible for
example to assign a 2× 2 matrix to another 2× 2 matrix using the following
syntax:

A[0][0] :: [2][2] = B[0][0] :: [2][2]

With this syntax it would be possible to specify an arbitrary subarray with an
arbitrary number of dimensions and would allow great flexibility in working
with arrays. This feature was changed to only allow ranges to be specified for
a single dimension because extra overhead was introduced when extracting
the subarrays in a manner that made it possible to work on them with SIMD
instructions and this extra overhead went contrary to the extra execution
speed that we wanted to obtain by using SIMD instructions. Issues with
the way we chose to implement the compiler also made it cumbersome to
acquire the information required to extract the subarrays. These issues are
further discussed in section 7.2.

4.5.2 Other ideas

Three features initially thought of as candidates in the language, but were
later removed from the drawing board. These were the repeat until loop,
the assignment of a range of numbers to a collection and using the range
operator on several dimensions.

4.5.2.1 Repeat loop

The loop followed the implementation used by Pascal, which has the form
Repeat S Until E. This construction repeats the statement S until the
boolean expression E equals true [35]. This construction was removed mainly
to simplify the language, as it contained both a repeat until, and a repeat
while loop. And as both loop constructions are equally powerful in their

46 Language design 4

expressive capabilities [36], since a negation of the boolean expression in a
while loop would have the same result, we did not see any reason to have
our language contain both. We decided to remove the Repeat S Until E
instead of the while version, as most of the popular programming languages
used today use a while loop construction [34], so using this kind of loop con-
struction in our language would make it more familiar to most programmers.

4.5.2.2 Ranges

The purpose of ranges was to simplify the assignment of large sets of numbers
to arrays. The implementation was as follows, where A is an array comprised
of ten integers, which is assigned the numbers from one to ten:

int A[10] = [1..10].

There were several problems with this, however. One problem was that the
semantics were not clear. What does

float A[5] = [2.46..5]

mean? One possible interpretation would be that the interval between 2.46
and 5 would be split into four equal parts, and the numbers between these
parts would be assigned to the array. So the given example would produce
an array

{2.46, 3.095, 3.73, 4.365, 5}.

This would also be a problem with ints when the interval is too small or too
large for the array size. As an example, observe the array declaration

int[3] = [1..100].

Again we could interpret this is as giving an array

{1, 50, 100},

but this interpretation becomes problematic when the computed numbers
can not be represented as integers.

Another problem was that the implementation became convoluted when
used with arrays of more than one dimension, as the order in which the
different dimensions of the array was initialised had to be understood by the
programmer in order to use it correctly. One possible solution to this, was
to implement it similar to Haskell [37], and thereby limit the use of ranges
to one dimensional arrays. But as the construction had lost most of the
convenience we originally had intended by using this implementation, and
because of the unclear semantics, we decided not to implement it in the first
version of the language, as we believe a more general solution at a later point
would be a better solution.

CHAPTER 5
Compiler architecture

This chapter documents the overall design of our compiler and the choices we
made during its construction. This is done through abstract diagrams of the
entire compiler structure, and small examples of specific interesting elements.
Our diagrams use the notation documented in [38]. Documentation of the
various design patterns used in the compiler can be found in section 5.1.
The use of /* ... */ in source code listings indicates that code unnecessary
for the explanation has been omitted for simplicity.

5.1 Design patterns

As multiple design patterns are used in the compiler, some of which have
had an impact on the overall design, the following section will document how
each of these patterns work and what problems they solve.

5.1.1 Singleton pattern

The purpose of the singleton pattern is to restrict instantiation of the class it
is implemented in so that only one instance is available at any given time and
no more can be created. This is done by restricting access to the constructor
of the class and letting a getter handle instantiation of the class [39].

1 class Singleton {

2
3 /* Getter for the instance */

4❶ public static synchronized Singleton getInstance () {

5 if (instance == null)

6 instance = new Singleton ();

7
8 return instance;

9}
10
11 /* Private constructor */

12❷ private Singleton () {

13}
14
15 /* Private static instance */

16❸ private static Singleton instance = null;

17
18}

Source code 5.1: Singleton example. [40, 41]

The pattern consists of three elements. The first is a static variable for
holding the instance of the class ❸. This together with the constructor is

48 Compiler architecture 5

declared as private to prevent instantiation from outside the class ❷. All
instantiation is done through the getInstance method ❶. This ensures that
the class is instantiated if the private variable at ❸ is null whereas if it has
already have been assigned a value then this value is returned.

5.1.2 Factory pattern

The purpose of the factory pattern is to hide the instantiation logic of similar
objects inside a class and use the newly created class through a common
interface. This common interface removes the need for other elements of
the program to know how the object was created. The use of a factory
removes the need for classes to know how to create objects of different types.
This pattern also ensures that the instantiation of the objects only exists in
one place of code which allows for changes in how objects are instantiated
without concern for other classes. [40, 41]

Figure F5-1: A simple implementation of a factory [40].

The pattern in the simple implementation shown in figure F5-1 only
consists of a few elements. The Factory class contains the logic needed to
instantiate classes which all implement the Product interface. This interface
defines the methods needed to use the different products the factory is capa-
ble of producing. This allows the client to request an object from the factory
with no concern for how it is created. It also lets the clients use it through
its interface with no need to know about how the product implements the
operations. Use of the pattern thereby heightens encapsulation by minimiz-
ing the need for the client to know anything about the product apart from
the operations that the interface implementation defines. [40]

5.1.3 Visitor pattern

The visitor pattern allows for operations working on an object structure in-
stead of implementing it together with the structure itself. This allows for
similar types of operations to be bundled together which allows for better
code reuse and encapsulation as helper methods can be implemented to-
gether with the methods that use them. Implementing the code directly on

5.1 Design patterns 49

classes could lead to redundant code if similar operations are needed multiple
places in the collection. Restructuring the collection to give these elements
a common ancestor is not possible [41, 39, 40].

Figure F5-2: A simple implementation of the visitor pattern [40].

Multiple elements work in conjunction in the visitor pattern. First the
object structure that the visitor is going to visit needs to implement the
accept method. This method functions as the interface for the visitors on
the object structure and allows an element in the object structure to accept
a visitor so it can be visited. The accept method should be implemented
at the top of the inheritance hierarchy. Optionally it can be defined in an
interface in order to make its presence more explicit.

The visitor itself is divided into an abstract visitor and a number of
concrete visitors. The abstract visitor defines the elements in the collection
that the concrete visitors need to implement visit methods for, while the
actual operations on the object structure is defined in the concrete visitors.
This way performing a new operation on the object structure only requires
a new visitor to be constructed as it is not necessary to make any changes
to the structure itself. [41, 39, 40].

5.1.3.1 Reflection

For all its benefits the visitor pattern also has a major drawback, namely
that all concrete visitors need to implement every visit method defined in
the abstract visitor. This means that even if some visitors only need to
visit some elements and is not concerned with the other elements that the
object structure contains, it must still implement visit methods for all el-

50 Compiler architecture 5

ements. Implementing a new type of object in the structure forces every
visitor to implement a visit method for this new type before testing can be
done [40]. This problem can fortunately be alleviated by the use of reflec-
tion in languages which support it like Java and C#, at the cost of reduced
performance.

Reflection allows the concrete visitors to iterate through their available
methods and use the most appropriate or call a default visit method if a
specialised version is not available. This allows for the implementation of
new objects in the structure being visited without the need for all visitors
to implement a visit method for this type. The visitors will use the one that
is the most appropriate based on the methods that are available, based on
which classes the element being visited inherits from and what interfaces it
implements [40].

5.2 Compiler model

The compiler is separated into a set of different components through simple
interfaces, as illustrated in figure F5-3. This allows us to hide the imple-
mentation of the class, which can be changed as long as the interface of
the classes stays the same. This creates a decoupling between the different
components, which makes it simpler to work simultaneously on the different
components, as other modules only depend on the exposed interface. This
also means that the dependencies between the components in figure F5-3
should be understood as dependent on the interface of the component, and
not its actual implementation.

Figure F5-3: An abstract model of our compiler.

Another very important function of the module-based approach we have
taken to the overall design of the compiler is that it encapsulates responsibil-
ity. This makes it very clear where new functionality should be implemented,

5.2 Compiler model 51

and what part of the program that contains the code to debug when bugs
are found. This in turn gives more freedom to the programmer doing devel-
opment, as only the interface of the modules have to be defined collectively,
since the implementation of the component is the programmer’s responsibil-
ity, and the responsibility of the module is defined through the model.

5.2.1 Compiler

This component consists of two classes: One named Compiler and another
named Utils. The Utils class contains various methods needed throughout the
compiler, for example to convert data types to strings or find the highest
order bit that is set to one. The Compiler class contains the main subrou-
tines and executes the various parts of the compilation process, based on
the command line parameters it has received. This is mainly done through
two methods: parseCompileFlags which parses the command line flags and con-
figures the compiler accordingly, and compile which handles the compilation
process.

The parsing of the command line flags in parseCompileFlags shown in source
code 5.2 is a simple string comparison of the input with known flags format-
ted as a switch case.

1 private void parseCompileFlags(List <String > flagsList) {

2 for(String flag : flagsList) {

3
4 switch(flag) {

5❶ case "--Print -AST":

6 this.flags [0] = true;

7 break;

8 /* ... */

9❷ default:

10 this.compileStatus = false;

11 printHelp ();

12 }

13 }

14}

Source code 5.2: The parseCompileFlags method.

If the given string matches a known flag, then the corresponding boolean
value in the control array is set to true indicating that this option has been
enabled ❶. If the string does not match any cases in the switch, then the
given flag is unknown to the compiler and the boolean compileStatus is set to
false ❷, indicating that no more of the compilation should be executed. This
in practice terminates the compiler, but allows for the compiler to terminate
gracefully as the compilers help page is printed to the user.

The compilation process itself is controlled by the compile method, which
can be seen in source code 5.3. This method ensures that the process is done
according to the command line flags, that errors are handled properly, and
it makes controlling the process more manageable overall.

1 public boolean compile () {

2❶ if(compileStatus)

3 scanAndParse ();

4
5 if(compileStatus)

6 declarationAnalysis ();

52 Compiler architecture 5

7
8 /* ... */

9
10❷ if(compileStatus && !flags [1])

11 codeGeneration ();

12
13❸ printAllExceptions ();

14
15 return compileStatus;

16}

Source code 5.3: The compile method.

The boolean compileStatus is checked before executing each part of the com-
pilation process ❶ in order to ensure that no errors have been found in any
of the prior methods. This is done because errors in the earlier stages of
the compliation in the CIP program might cause other errors later, which
will make it harder for the programmer to see what the problem exactly is.
Parts of the compiler can be omitted based on the given compile flags. For
example, the code generation is omitted if the compiler is given the ”–no-
code” flag ❷. At ❸ all errors and warnings produced by the various parts
of the compiler are formatted and printed by printAllExceptions.

5.2.2 Scanner and parser

This component is, contrary to the other compiler components, not written
by hand but instead generated using the Coco/R compiler generator. Our
reasons for choosing this particular tool is documented in section 3.4. That
is why we in this section will focus on how we generate the source code
and only document the parts of the scanner and parser that are needed to
illustrate this. The generated scanner and parser is based on a CFG which
can be seen in appendix A.

1 /* ... */

2
3❶ Loop <out Node loop > (. loop = null; Node cond , s,

loopBlock; .)

4
5 =

6
7❷ "while" (. loop = factory.produce

8 (LoopNode.class , t.line , t.col);

.)

9 /* ... */

Source code 5.4: Coco/R Action code example.

Besides creating the scanner and parser component of the compiler, Co-
co/R is also capable of injecting Java code into the parser. We use this
to construct our AST by injecting Java code from the parser depending on
the different constructions encountered in the parsing process. Coco/R uses
two special constructs to define how the Java code is injected. The first
one is <> which is used to define return type and formal parameters for
the method generated for the various non-terminals. (. .) is the second
construct that specifies Java code that will be inserted at that place in the
parser.

5.2 Compiler model 53

In source code 5.4 both of these constructs are used at ❶. Here the
method for the non terminal 〈Loop〉 has the return type Node and it returns
the contents of the variable loop. The code inside the parentheses is normal
Java code and is simply inserted into the parser. The code at ❷ describes how
a loop node is produced and where it is placed in the AST. The factory.produce

method is a part of the AST component that manufactures a Loop node to
the AST with line and column number taken from the token. How the
AST component works in detail is described further in section 5.2.3 and
factory.produce in section 5.1.2. The code genereated by Coco/R from source
code 5.4 is shown in source code 5.5.

1 Node Loop() {

2 Node loop;

3 loop = null; Node cond , s, loopBlock;

4
5 /* ... */

6
7 loop = factory.produce(LoopNode.class , t.line , t.col)

;

8
9 /* ... */

10
11 return loop;

12}

Source code 5.5: Coco/R action code inside the parser’s method.

We interact with one other small part of the generated parser, namely
its error component. The parser uses a fairly simple error system where
a mismatch between what token it expected and what token it received
increments a counter and prints a message. This counter is checked by the
compiler after the source code has been scanned and parsed, and if the
counter has been incremented, then the compileStatus boolean variable is set
to false as documented in section 5.2.1.

5.2.3 Abstract syntax tree

The AST is the compiler’s internal representation of the program being com-
piled, and is created by the scanner and parser components as documented
in section 5.2.2. The AST consists of different types of nodes, all subclasses
of the Node class. The different types of nodes and their inheritances can be
seen in figure F5-4. This is done to make use of inheritance to maximize code
reuse, as methods and instance variables needed in multiple different nodes
are implemented in the abstract super class, so that one implementation can
be used for all derived classes.

The general structure of the nodes is inspired by the format given as an
example of an AST node structure in [42], and is shown in F5-5. The Node

class is an implementation of this structure, and variations of various AST
interface methods proposed in [42].

The structure is generally simple: Each node can have a number of chil-
dren that can be accessed through a reference to its first child node. Access-
ing other children is done with the use of references to a node’s sibling, a
reference to the leftmost sibling in a list of children and a reference to each
node’s right sibling allows for iteration through a node’s siblings, which the
parent can utilise to access every child it might have. The parent pointer

54 Compiler architecture 5

Figure F5-4: Inheritance diagram of the nodes of the AST.

on the node allows the node to ascend the tree, and visit its parent node’s
siblings. Having a unified system for how nodes are linked together simpli-

5.2 Compiler model 55

Figure F5-5: Structure of our AST nodes. [42]

fies the use of the AST as all nodes have a common interface, with a few
exceptions depending on where they are placed in the inheritance hierarchy
as they might contain different data sets, and removes the need for any node
specific traversal method.

There is a small hack needed when a DeclarationNode is created with an as-
signment value. If a DeclarationNode had a assignment value with it, it meant
that the AssignmentOpNode did not have a variable node as its left most child.
This created inconsistencies while the visitors traveled the AST. To fix this a
copy of the original variable node was created and adopted to an Assignmen-

tOpNode. After that, the AssignmentOpNode adopted the AssignmentValueNode.
The reason why a clone was created instead of assigning the original node as
its child was because otherwise it would mess up the pointers to its parents
and siblings. Which one should it point to when the visitors asked for its
parent? That is why we decided to make a clone.

5.2.4 Symbol table

The symbol table is a component whose purpose is to hold information about
all the different identifiers in the program being compiled. This simplifies
later parts of the program analysis that depend heavily on identifier infor-
mation like correct use of scopes and the type system.

The symbol table consists of two general constructions as shown in figure
F5-6. Symbols encapsulate the various information about each identifier in
the classes VariableSymbol, ArraySymbol and ProcedureSymbol. Environments
function as a collection of symbols and define the scope they are part of.
Since the various types of identifiers share information they all inherit from
the abstract Symbol class that contains the name and type of the identifier
as well as the environment that the identifier was defined in.

The instantiation of symbols are done by the SymbolFactory class as shown
in source code 5.6 that creates the symbol with the information they need.

1 /* ... */

2 public static VariableSymbol produceVariable(String

name , Datatype type , boolean isconstant ,

IEnvironment <Symbol > env) {

56 Compiler architecture 5

Figure F5-6: Environment and symbol classes.

3 return new VariableSymbol(name , type , isconstant ,

env);

4 }

5}

Source code 5.6: SymbolFactory encapsulates symbol production.

The scopes of the program is defined by generic environments which
are linked by a parent pointer that points to the previous environment.
A representaion of this can be seen in figure F5-7. The interface of an
Environment is defined by the IEnvironment interface class to ensure that it
contains the methods required which allows the Symbol abstract class to only
depend upon the interface instead of the class. The environment part is
entirely separated from the symbol part as it is programmed to be generic
which allows it to be instantiated as a container for all types descending
from the Object class.

Figure F5-7: Visual interpretation of the scope system.

There are two different kinds of environments, Environment and Proce-

dureEnvironment, with the latter being a small extension to the former which
allows the definition and retrieval of a procedure’s formal parameters.

Implementation-wise the Environment class is just wrapping around a hash
table which holds instances of the concrete Symbol subclasses which contains

5.2 Compiler model 57

the actual information. The class contains methods to add and retrieve
elements in the hash table but also methods to control the notion of scopes.
The opening of a new scope, for example when the code enters a procedure,
is handled by the openScope method shown in source code 5.7.

1 public IEnvironment <TSymbol > openScope () {

2 IEnvironment <TSymbol > env = new Environment <TSymbol >(

this , this.subscopesNum ++);

3 return env;

4}

Source code 5.7: The openScope method of the Environment class.

This method creates a new environment with a reference to the one
currently being used and returns it to the visitors discussed in section 5.2.5
which then attaches it to the correct node. The method get then allows
identifiers to be retrieved by going through each environment’s hash table
before using the parent reference as shown in 5.8.

1 public TSymbol get(String name) throws

UnknownIdentifierException , NullPointerException {

2 if (this.isLocal(name))

3 return ht.get(name);

4 else if (this.getParentEnv () != null)

5 return this.getParentEnv ().get(name);

6 else

7❶ throw new UnknownIdentifierException("Identifier

" + name + " has not been declared.");

8}

Source code 5.8: The get method of the Environment class.

This in practice implements the scope rules for CIP defined in section
4.4.2 as identifiers in the innermost scope are returned by the get method
as they are defined in a hash table before any other instances of the same
identifier. Only identifiers declared in outer scopes from the current can ever
be found as the environment only refers to these. The exception shown at
❶ are together with others derivatives of the SymbolTableException shown in
figure F5-6.

5.2.5 Visitor component

This component is the workhorse of the compiler as it contains all opera-
tions done on the AST. It is built around a visitor pattern and the reflection
methods included in Java. The use of the visitor pattern allows us to de-
fine new operations for nodes in the AST without changing the node itself.
This also lets us encapsulate similar methods together in a visitor, like the
TypeCheckVisitor that has all type checking methods instead of having these
methods spread out on the different AST nodes. The use of reflection allows
us to specify a general visit method in the abstract visitor class and then
only write the visit methods actually needed in the specific visitor. The dis-
advantage of this is unfortunately a performance cost. For more information
about the visitor pattern itself and the use of reflection see section 5.1.3.

The visitors used in the compiler are shown in figure F5-8. They all derive
from the abstract visitor class but are otherwise independent of each other.
The only notable method in the abstract visitor is visitChildren which uses the

58 Compiler architecture 5

Figure F5-8: Diagram of the visitor component.

reflective dispatch method which finds the correct method to call based on
the most specific class of the node to visit every child in the particular node
with the visitor it is called in. The visitChildren method is shown in source
code 5.9.

1 protected void visitChildren(Node node) {

2 if (node != null) {

3 for (Node child : node) {

4❶ child.accept(this);

5 }

6 }

7}

Source code 5.9: The visitChildren method.

Although the method itself is fairly simple it is a good example of how
the reflective visitor works. The method consists of a loop iterating through
all the children of node with no concern for their particular type. The reflec-
tive visitor visits them by using their accept method which calls the dispatch

method and sends the visitor with the method call. For more information
about the accept method see section 5.1.3.

We have developed a collection of small visitors that all have a specific
purpose. This makes the code easier to manage as the code base for each
visitor is and specific to that visitor and the code base is thus sought to be
kept small.

DeclarationVisitor Collects all identifiers in the form of variables and
procedures and saves them in the symbol table. While it does this,
scopes for procedures, if-statements, and loops are also created so all
identifiers only are available in their correct context.

CheckIdentifiersVisitor Checks if the program being compiled has de-
clared all identifiers in the scope they are being used so that CIP’s
scope system is used corretly. See section 4.4.2 for more documenta-
tion about the scope rules.

5.2 Compiler model 59

TypeAdderVisitor Ensures that all identifiers contains a data type so the
TypeCheckVisitor has all the data it needs.

TypeCheckVisitor Checks if operations in the program follows CIP’s type
system in terms of both operations on variables and scalars. Further-
more, it also checks the return type of the procedure and the use of
parameters. The type system is documented in section 4.4.1.

GeneralizeTypeVisitor This visitor generalizes types of different TypeN-
odes. If for example a program adds an int8 to an int32, it changes
the type of the int8 variable to an int32.

OperationTypeVisitor Checks whether an operator works on arrays or
scalars and stores this information.

SemanticsVisitor Does various different semantic checks. For example it
checks if a void procedure contains any return statements which returns
a type or if array indexes are out of bounds.

ArrayBoundsVisitor Checks if declarations or assignments of a range of
numbers to arrays match the dimensions of the array and if possible
the size of the given dimensions.

IndexRangeVisitor Checks if the indexes used in ranges matches the di-
mensions of the array they are used on, and that the indexes to indi-
vidual elements are acceptable.

DeadCodeVisitor Analyses the program for detectable nonreachable code.
The initial version only supports immutable expressions containing
scalars.

CodeGenerationVisitor Defines which part of the emitter each node should
use to generate code. Code generation is further described in section
5.2.7.

PrettyPrintVisitor Prints the constructed AST to standard output which
was originally built for development purposes but left in the compiler
as it might be useful to see the compiler’s representation of the program
being compiled.

5.2.6 Exception handler

The exception handler handles complications with the program during the
compilation process. It does however not concern itself with exceptions hap-
pening in the code of the compiler itself, which is instead handled by Java’s
normal exception routines which either catch the exception and correct it
during run-time, or terminate the program if the program can not recover
from that particular exception. The structure of the exception handler can
be seen in figure F5-9.

The exception handling mechanisms of the compiler consist of three
parts. The first part is a set of errors and warnings derived from an ab-
stract class that defines their public interface and inherited implementation
from a common super class. The second part is the two factories that contain
logic about how each exception should be constructed. This is based on the
node type in the AST where the exception happened and what exception

60 Compiler architecture 5

Figure F5-9: Diagram of the exception handler.

type it is. This is further described in section 5.1.2. The third and last part
is the handler itself, which contains the logic needed to handle both errors
and warnings. The compiler contains two seperate instances of the exception
handler, one that contains all errors and one that contains all warnings.

Exceptions are separated into warnings and errors because they represent
problems of different severity in the program being compiled. Errors are, as
the name suggests, problems that prevent the program from being compiled
correctly, such as missing declarations or accessing non-existing elements in
arrays. Warnings, on the other hand, are elements in the source code whose
behavior may be unintended, for example code that is inaccessible due to
branches.

The interfaces used by the exceptions consist mainly of two methods
getNameString and getInfoString. The first method, which can be seen in source
code 5.10, generates a string containing generic information shared by the
different exceptions and therefore is implemented in the abstract class. The
second, which generates an exception-specific information string, is abstract
on the super class which forces an implementation in all errors.

1 protected String getNameString () {

2 return "[" + this.getClass ().toString ().substring (6)

+ " At Line: " + this.lineNumber + ", " + "Column

: " + this.columnNumber + "]\n\t\t";

3}

Source code 5.10: The method getNameString for generating generic
information.

The factories producing both errors and warnings are implementations of
the factory pattern, which is discussed in section 5.1.2. The factory is used
by calling the factory.produce method together with the AST node where the
error happened and the type of exception that the factory should produce.

1 public static CompileError produce(Node node , Class <\?

extends Exception > type) {

2 CompileError ce = null;

5.2 Compiler model 61

3
4❶ if(node instanceof VariableNode) {

5 ce = produce ((VariableNode) node , type);

6 }

7 /* ... */

8
9❷ ExceptionHandler.getErrorHandler ().addException(ce);

10
11 return ce;

12}

Source code 5.11: The error factory’s produce method.

In source code 5.11 it can be seen that the factory checks what type of
node it has received and calls the corresponding production method with
the node and error type ❶. The information about the error and node type
is passed on to the error which it returns. The compile error variable is
then added to the error handler at ❷. The factory also returns the error to
the visitor for use if it so chooses. The warning factory operates similarly
but has the production routines for the different node types built into the
WarningFactory.produce method which is only capable of producing one type of
warning.

1 public static ExceptionHandler <CompileWarning >

getWarningHandler () {

2 if(warningInst == null)

3 ExceptionHandler.warningInst = new

ExceptionHandler <CompileWarning >("warnings");

4 return warningInst;

5}

Source code 5.12: Warning handler instance getter.

The exception handler’s interface for the handler consists of two getter
methods, one for the error handler getErrorHandler and one for the warning
handler getWarningHandler. This is done to enhance encapsulation and allow
the use of the singleton pattern documented in section 5.1.1. This pattern
prevents the instantiation of more than one of each handler to ensure that
all exceptions are saved at the same place, as seen in source code 5.12.
The main purpose of the handler is to aggregate the exceptions from the
factory and therefore contain both add and remove methods. The handler
also contains a print method called printExceptions which prints all exceptions
that the handler currently contains to the standard output.

5.2.7 Code generator

This section contains information about the code generation part of the
compiler. The code generator consists of three parts where the first one
is the code generator visitor class which provides information for the later
parts in the form of code fragment objects. These objects is made by the
code fragment generator class which gets its informaton for the objects from
the code generator visitor while it traverses the AST. The code fragment
generator is a wrapper around the string buffer class to simplify the process
of transforming the AST information to C code with inline assembler by
supplying the code generator visitor class with methods to ease this. Code

62 Compiler architecture 5

fragment objects are then used by the code emitter class to output the
objects as a string to the specified output file.

5.2.7.1 Code generator visitor

The heart of the code generator is simply another visitor. It generates target
code directly off the AST. However it differs a bit from the other visitors
since it distributes a few responsibilities to other objects. The CodeGenera-

torVisitor class does not handle the generation of the strings containing code,
or code fragments as we call them. The visitor leaves this responsibility to
the CodeFragmentGenerator class which knows all about how to generate code
fragments and concatenate them, thus hiding the details of how it is done.
Through the public API of CodeFragmentGenerator the CodeGeneratorVisitor is
capable of requesting various code fragments. The CodeFragmentGenerator

does not know how to emit code, this responsibility is left to the CodeEmitter

class.
For instance when the CodeGeneratorVisitor visits a BinaryNode the visitor

has to determine whether it is a complex binary operation, one that involves
operations on arrays, or a primitive operation that involves only primitive
types.

1 public Object visit(BinaryOpNode node) {

2❶ if (node.getOperationType () == OperationType.Complex)

3 return this.visitComplexBinaryOperation(node);

4 else

5 return this.visitPrimitiveBinaryOperation(node);

6}

Source code 5.13: The code generator visitor calls visit on BinaryOpNode.

The operation type is determined at ❶, the operation type has already been
resolved by another visitor OperationTypeVisitor.

1 private CodeFragment visitPrimitiveBinaryOperation(

BinaryOpNode node) {

2 CodeFragment cf = null;

3 // Visit left operand

4❶ CodeFragment operand1 = (CodeFragment)node.

getLeftMostChild ().accept(this);

5 // Visit right operand

6❷ CodeFragment operand2 = (CodeFragment)node.

getLeftMostChild ().getRightSibling ().accept(this);

7 // Generate CodeFragment

8❸ cf = this.getCodeFragmentGenerator ().

createBinaryOperation(node.getOperator (), operand1 ,

operand2);

9 return cf;

10}

Source code 5.14: The code generator calls visitPrimitiveBinaryOperation on
BinaryOpNode.

Source code 5.14 shows how the visitor handles the primitive binary opera-
tion. The method is straight forward:

1. Visit the left operand ❶ to obtain its code fragment.

2. Visit the right operand ❷ to obtain its code fragment.

5.2 Compiler model 63

3. Let the CodeFragmentGenerator ❸ generate a valid code fragment that
concatenates the two previous fragments.

The resulting code fragment, which is a binary operation in this example,
is then propagated further up the AST. The method basically performs a
postorder traversal of the subtree. The propagated code fragment cf is caught
and emitted in another node. For instance in this example it may only be
emitted when visiting an assignment statement. Source code 5.15 shows the
logic handling code generation for assignments.

1 /*
2 * @desc Generates code for an assignment operation

3 **/

4 public Object visit(AssignmentOpNode node) {

5❶ if (node.getOperationType () == OperationType.Complex)

6 this.visitComplexBinaryOperation(node);

7 else {

8 // Let BinaryOpNode visit -method handling

CodeFragment generation

9❷ CodeFragment assign = (CodeFragment)this.visit (((

BinaryOpNode)node));

10 // Generate statement

11 CodeFragment cf = this.getCodeFragmentGenerator ().

createStatement(assign);

12 // Emit codefragment

13❸ getEmitter ().emitln(cf);

14 }

15 return null;

16}

Source code 5.15: Assignment statement handling and code emitting

Since an AssignmentOpNode is a BinaryOpNode it has to deal with the same case,
it has to determine whether the current operation involves array operations
❶. If it does it calls a specialised method suitable to handle such expressions.
However if the operation type is primitive then the visitor falls back on the
visit method for BinaryOpNode and lets it obtain the proper code fragment
for the expression. When the visitor returns to this node again it emits
the obtained code fragment by issuing a call to the emitln method ❸ on the
CodeEmitter.

1 private CodeFragment visitComplexBinaryOperation(

BinaryOpNode node) {

2❶ CodeFragment leftOperand = (CodeFragment)node.

getLeftMostChild ().accept(this);

3❷ CodeFragment rightOperand = (CodeFragment)node.

getLeftMostChild ().getRightSibling ().accept(this);

4 /* ... */

5❸ CodeFragment rangeExp = this.getArrayOperationRange(

node.getLeftMostChild ());

6 /* ... */

Source code 5.16: The code generator calls visitComplexBinaryOperation on
BinaryOpNode.

The source code in 5.16 shows how the visitor handles complex binary
operations. The first part of the code is also straight forward:

• Visit the left operand ❶ to obtain its code fragment.

64 Compiler architecture 5

• Visit the right operand ❷ to obtain its code fragment.

• Gets the range to operate on from the left child, as we are certain that
this is the array type because of the way the AST is build ❸.

1 /* ... */

2❶ CodeFragment leftPtr = this.

getCodeFragmentGenerator ().createTemporaryVariable(

true);

3 CodeFragment rightPtr;

4❷ this.emitTmpVarDeclaration(type , 1, leftPtr , this.

getCodeFragmentGenerator ().createAddressOf(leftOperand

));

5❸ if (this.retTmpArray == true) {

6 rightPtr = rightOperand;

7 resultArray = rightPtr;

8 } else {

9 rightPtr = this.getCodeFragmentGenerator ().

createTemporaryVariable(true);

10 this.emitTmpVarDeclaration(type , 1, rightPtr ,

this.getCodeFragmentGenerator ().

createAddressOf(rightOperand));

11 resultArray = this.emitResultArrayAllocation(type

, elements);

12 this.retTmpArray = true;

13 }

14 /* ... */

Source code 5.17: The code generator calls visitComplexBinaryOperation on
BinaryOpNode. continued.

The continued source code in 5.17 shows logic handling complex oper-
ations on arrays when both operands are arrays. In the beginning of the
method call code fragments are obtained for both leftOperand and rightOperand.
Since both operand are arrays we will be using to pointers to point to the
beginning of the operation range in both arrays. One may note that the left-

Operand code fragment contains the left operand array identifier associated
with the proper index dereferences. The leftPtr points to the left operand ❶.
At ❷ the leftPtr is emitted and initialized to the address of left operand. The
rightPtr is not initialized and emit until later.

The variable retTmpArray is an instance variable used to determine whether
the result array has already been allocated for the expression ❸. This is a
little bit of a hack which has been imposed due to inconsistent design of
the CodeFragment-class, we need some kind of information describing what
returns from the operand visits so that we may keep reusing an already
allocated result array for the entire expression. retTmpArray simply serves
as a flag indicating whether any of the operands returned is this special
temporary result array. On the basis of this information the rightPtr is either
assigned to point to the result array or it points to the address of the right
operand array.

1 /* ... */

2❶ SSE2ASMCode = this.getCodeFragmentGenerator ().

createSSE2Operation(node.getOperator (), resultArray ,

leftPtr , rightPtr , SSE2elements , type , false);

5.2 Compiler model 65

3❷ leftOversHandle = this.getCodeFragmentGenerator ().

createSSE2LeftOversHandle(node.getOperator (),

resultArray , leftPtr , rightPtr , SSE2elements , elements

, false);

4 /* ... */

5}

Source code 5.18: The code generator calls visitComplexBinaryOperation on
BinaryOpNode. continued.

Finally in source code 5.18 the CodeFragmentGenerator generates ASM C inline
code fragments objects encapsulating the SSE2 instructions ❶. The leftOver-

sHandle contains a code fragment to handle any elements from the arrays that
could not fill out a XMM-register.

One may notice that since the result array is propagated further up AST
until a copy instruction operation occurs. However since we do not have
any optimisations in our compiler at the moment the following expression
imposes an unnecessary overhead:

1 // Let A and B be arbitrary arrays

2 // Let i and j be arbitrary integers

3 A[i]::[j] = A[i]::[j] + B[i]::[j];

Source code 5.19: Overhead imposed due to lack of optimisations

In source code 5.19 the result of the plus-operation is stored in a temporary
result array just to be copied right back into the array A. Instead it would
have been smart if our compiler would recognize that source and destination
were the same, thereby skipping one allocation and copy operation.

5.2.7.2 Code fragment generator

We will show a simple example of a method from the CodeFragmentGenerator-
class. Every single method of the class is just building proper code fragments.
The source code 5.20 shows the code generation a code fragment for a binary
operation.

1 public CodeFragment createBinaryOperation(Operator op ,

CodeFragment operand1 , CodeFragment operand2) {

2 CodeFragment cf = this.createCodeFragment ();

3❶ cf.appendCode(operand1 , false); cf.appendCode(Utils.

convertOperatorToString(op)); cf.appendCode(operand2);

4❷ cf = this.wrapParenthesesAround(cf);

5 return cf;

6}

Source code 5.20: The code fragment generators emit.

At ❶ the operands are correctly connected to their operator and then re-
turned to the caller. One may notice that we put parentheses around every
expression ❷ we do this to ensure that the precedence rules of our program-
ming language is preserved in the target language.

5.2.7.3 Code emitter

The purpose of the code emitter class is to provide methods to print the code
fragment objects into the specified output file. It handles some primitive
pretty printing as well by asking the boolean variable atNewLine whether this

66 Compiler architecture 5

is the first string to be printed on the current line. If true, it prepends the
level of indentation (some arbitrary number of whitespaces) to the string.
The level of indentation is increased and decreased in each visit of a BlockNode

and ProcedureBodyNode.

1 public void emit(String s) {

2 if (this.atNewLine) {

3 s = this.getIndentationAsString () + s;

4 this.atNewLine = false;

5 }

6 this.getStream ().print(s);

7}
8
9❶ public void emit(CodeFragment cf) {

10 this.emit(cf.toString ());

11}

Source code 5.21: The code fragment generators emit.

In source code 5.21 we can see that if a code fragment object is passed as a
parameter the object is converted to a string ❷. This string is then printed
in the specified output stream that getStream has information about.

5.2.7.4 Memory management

Since all arrays in our language are heap allocated we need some kind
of memory management. However constructing and implementing a full-
fledged garbage collector is out of the scope of this project. Therefore we
have chosen to use a simple stack-based allocation framework written in C
called cipalloclib. Every array is allocated through this framework. A refer-
ence to each allocation is pushed onto a global storage class stack. Right
before the program terminates a call to cip free() is issued which pops and
frees each element from stack. This give us a very simple memory manage-
ment.

CHAPTER 6
Test of compiler

In the following chapter will we describe the way in which we have tested
our compiler, as well as the results we have obtained from the tests.

There are several different reasons for testing our compiler. The first
is that we need to ensure that our compiler produces the correct code so
that the produced code is equivalent to the intended semantics. As the
purpose of this project was to create a language that could effectively use
SIMD instructions, we must ensure that the SIMD instructions are generated
correctly.

Since our language is concerned with execution speed through the use of
the SSE instruction set that in theory is faster than sequential instructions,
it is necessary to compare what our compiler generates performance-wise to
what other, well-established compilers such as the GCC compiler generates.

6.1 Testing Methods

To test our compiler we will create several test programs that will remain
unchanged throughout our testing phase so that there is always a fixed con-
stant in our tests. By translating these programs into C it is possible to
compare the result of the C program and the CIP program and see how they
differ. This has been done regularly throughout the development process.
The sample programs we have created can be seen in appendix B.

The only explicit test we will create is a performance test. We will
test a performance-heavy program that allocates multiple arrays which we
will use to test the performance of the generated program by our compiler.
These results are going to be compared to the performance of an equivalent
program in C and compiled with GCC both unoptimised and optimised.

As performance can vary between different CPUs we intend to execute
the performance benchmark using the different CPUs we have available and
compare the results.

6.2 CIP Benchmark

The benchmarking between C and CIP is done by running equivalent pro-
grams with small arithmetic operations on large amounts of data. This is
done in practice by allocating two arrays used as the right and left operand
of an arithmetic operation and then using a loop in C or CIP to perform
the operation. As the CIP compiler always uses a third array to save the
result of array operations and then move the elements to the correct place,
two different tests have been written for C: A direct test where the result

68 Test of compiler 6

is saved directly to the target array, and an indirect test where it, as in the
CIP program, is moved after the operation is complete. All arrays in the
programs are allocated and deallocated using cipalloclib which is described in
section 5.2.7.

We have used two different computers in the performance benchmark:
One with an Intel Core Duo 2 with 2 GB of RAM, and another with an Intel
Core i7 and 8 GB of RAM, both running a 64-bit version of Linux. These
were used to run two tests, one doing additions between two arrays and
another which does multiplication. Using addition as the test instruction
was done because it is available as a single instruction for all packed data
types, which allows us to test the performance of the programs while only
changing the data type used.

1.5 GB allocated 3 GB allocated 4.5 GB allocated

data type C CIP C CIP C CIP

8-bit Integer 6.410 4.495 12.874 8.981 19.213 13.460

16-bit Integer 3.567 2.520 7.314 5.033 10.686 7.549

32-bit Integer 1.826 1.493 3.647 2.983 5.472 4.475

64-bit Integer 1.026 0.985 2.051 1.984 3.073 2.949

32-bit Floating 1.604 1.268 3.199 2.529 4.796 3.791

64-bit Floating 1.077 1.034 2.156 2.066 3.073 3.097

Table T6-1: Direct array additions using an Intel Core i7.

1.5 GB allocated 3 GB allocated 4.5 GB allocated

data type C CIP C CIP C CIP

8-bit Integer 8.224 4.492 16.446 8.978 24.666 13.463

16-bit Integer 4.581 2.519 9.151 5.030 13.722 7.545

32-bit Integer 2.397 1.493 4.789 2.985 7.176 4.475

64-bit Integer 1.335 0.968 2.670 1.966 3.998 2.952

32-bit Floating 2.166 1.272 4.331 2.532 6.499 3.861

64-bit Floating 1.387 0.986 2.767 1.966 4.148 2.952

Table T6-2: Indirect array additions using an Intel Core i7.

1.5 GB allocated

data type C CIP

8-bit Integer 8.955 6.855

16-bit Integer 4.986 4.617

32-bit Integer 2.976 3.535

64-bit Integer 2.223 1.925

32-bit Floating 3.721 4.368

64-bit Floating 2.219 3.232

Table T6-3: Direct array additions using an Intel Core 2 Duo.

The other test is done using SSE instructions to multiply array elements
with each other. This is done to compare the use of a simple instruction in
the form of addition with the more complex instruction in the form of mul-
tiplication without changing the data type. Since multiplication only exists

6.2 CIP Benchmark 69

1.5 GB allocated

data type C CIP

8-bit Integer 12.223 6.490

16-bit Integer 6.308 4.508

32-bit Integer 4.069 3.532

64-bit Integer 3.142 3.167

32-bit Floating 4.827 4.270

64-bit Floating 3.121 3.161

Table T6-4: Indirect array additions using an Intel Core 2 Duo.

as an instruction for floating point data types, this test is only conducted on
these.

1.5 GB allocated 3 GB allocated 4.5 GB allocated

data type C CIP C CIP C CIP

32-bit Floating 1.603 1.264 3.193 2.535 4.799 3.222

64-bit Floating 1.077 1.035 2.151 2.067 3.222 3.096

Table T6-5: Direct array multiplications using an Intel Core i7.

1.5 GB allocated 3 GB allocated 4.5 GB allocated

data type C CIP C CIP C CIP

32-bit Floating 2.174 1.035 4.328 2.541 6.492 3.788

64-bit Floating 1.390 1.035 2.771 2.065 4.156 3.096

Table T6-6: Indirect array multiplications using an Intel Core i7.

1.5 GB allocated

data type C CIP

32-bit Floating 4.248 4.248

64-bit Floating 2.222 3.164

Table T6-7: Direct array multiplications using an Intel Core 2 Duo.

1.5 GB allocated

data type C CIP

32-bit Floating 4.819 4.248

64-bit Floating 3.104 3.164

Table T6-8: Indirect array multiplications using an Intel Core 2 Duo.

The results of this test can be seen in the above table T6-1, table T6-2,
table T6-5, table T6-6, table T6-3, table T6-4, and table T6-7 and it can be
seen that CIP is faster than C when GCCis compiling without any optimiza-
tion, and that the performance leap is most significant when smaller data
types are used as CIP is capable of computing larger amounts of elements
in parallel.

The performance lead was quickly lost when GCC’s optimisations were
enabled which allowed the compiler to use optimisation functions not in-

70 Test of compiler 6

cluded in our compiler, as we consider them out of scope of this project.
So the performance gained by using CIP’s data parallelism gives it an edge
when compared to another compiler without optimisations like itself, but is
outmatched when compared to the optimisation routines of a modern com-
piler.

CHAPTER 7
Conclusion and discussion

In this chapter we will conclude upon our project and discuss issues that
came up during the project process as well as reflect upon ways in which
to improve and expand upon the language and compiler presented in this
report.

7.1 Conclusion

This section will contain the conclusion of the whole project. The analysis
in section 2 helped with the understanding of SIMD and gave inspiration to
the language creation process which resulted in CIP. With this knowledge
that was gained through the analysis we were able to make important design
restrictions to the compiler and therefore the language which is documented
in section 3. These restrictions and the understanding of SIMD helped give
purpose, further restrictions and helped form the language design in section
4 into the current which focuses on computing arrays efficiently with data
parallelism. The language’s formal and informal grammar, syntax and se-
mantics, operation rules and contextual rules that were made in the language
design section helped us with choices and overall design of the compiler which
is located in the compiler architecture section 5.

We formalised our programming language by creating a CFG expressed
using the Extended Backus-Naur Formalism (EBNF). This imposes a nat-
ural frame in how one may express oneself in our language. However by
enforcing constraints on the language through EBNF, it is possible to have
a consistent language construction, which is very important when construct-
ing the abstract syntax tree. For more information on the design decisions
behind the language, see section 4.

Since this is the first version of our programming language we have cho-
sen only to support a predefined handful of data types. We wanted to create
a general purpose programming language with some special array opera-
tions, therefore the supported integer and floating-point types are sufficient
to fulfill this purpose. We made arrays nearly first class citizens of our pro-
gramming language, however they fail in being first class due to returning
arrays from procedures being unsupported at the moment and operations
on arrays requiring the programmer to specify ranges on arrays.

The benchmarks of our language showed that we could outperform GCC’s
C compiler or at least have comparable performance in most of the tests.
That said, the result was obtained by having no optimisations whatsoever.
However GCC outperformed our language greatly when using optimisation
flags (-O3). This result was expected, but we are surprised that the code
generated by our compiler executes faster than the code generated by GCC

72 Conclusion and discussion 7

without optimisation flags. Especially since we have an extra overhead due
to the copy instruction and the temporary result container array allocation
in each statement.

7.2 Discussion

This section contains the discussion about features that could have been im-
plemented but were left out from this version of our language due to decisions
made during the development process. The reasons for not including these
in the final system vary from early implementation limits to them being out
of scope. We will also discuss why we would like to include these features in
a future version of our language and compiler.

7.2.1 Expansion of the AST

During the development process we found that the way in which we had
structured our AST gave some issues during implementation. We tried in
our AST to have as few node classes as possible to reduce complexity, but we
found during implementation that we would have benefitted from additional
node classes that could contain additional information about constructs in
the language during compilation. Therefore we would like an expansion of
the AST that would include new nodes on the tree if we were to continue
developing the compiler. For example we would like to implement an array
node in the tree that would let us store information about arrays in a more
natural way than we are currently doing.

7.2.2 Intermediate format

Instruction selection is often simplified by translating source language con-
structs into a form more suitable for code improving transformations as a
step before code generation. We would like to perform optimisation on the
code that we generate in order to obtain better performance. In order to
facilitate this, we would like to introduce an intermediate format for our
compiler that is better suited for optimisation purposes. An intermediate
language is typically more concise and abstract than the lower level target.
This allows the developer to focus on the code generation process without
having to think about the underlying details of the machine’s instruction
set. This intermediate format will make it possible to optimise and make
the code platform more independent. Some examples of intermediate lan-
guages is three address code and static single assignment. [42]

7.2.3 User-friendly features

The language presented in this report does not offer that many user-friendly
code constructs in the language compared to other mainstream languages
such as C and Java. We would like implement such constructs as the ++

or -- operators which would make writing the code more efficient, as the
developer would have to write less code. Other things we could implement
in the future would be the ability to make for-loops which many people are
accustomed to. The string data type is not implemented in CIP but could
be implemented and could greatly benefit the developer in everything from
debugging to general programming. We would also like to allow the print

7.2 Discussion 73

statement to work one one and two-dimensional arrays, so that it prints these
out in an easy-to-read format. The ability to print more than one element
to standard output at a time would also be beneficial and if the string data
type is implemented a way to combine variables, arrays and strings in a print
would increase writeability as well. Another useful feature would be to allow
the program to accept some kind of input, perhaps like the scanf function in
C, which could be implemented in the future.

7.2.4 Array operations

We would have liked to have more array operations available in CIP that
would let the developer select more than rows of arrays. This was not im-
plemented because it was out of scope for this report as the system would
need a runtime environment to take care of all the array information or
a restructuring of the AST because our current AST did not contain this
information.

Figure F7-1: Illustration of box selection of array and assignment.

We would have liked to have the selection available for the developer in
a way so they could make array selection across rows. The implementation
we thought of was a box selection as seen in figure F7-1. With this box
selection it would be possible to select column representations as well as
row selections and a smaller matrix selection in our array as seen in F7-2.
It would even be possible to select subarrays of arrays with an arbitrary
number of dimensions.
Something to take into account though is whether or not that operation is
even worth it. Since all arrays in our language are represented as single
dimension arrays in C, it would mean that special calculations would be
necessary in order to get the elements in those positions when operating
with columns. Not only that, we would have to put all of the elements into
a temporary array and apply the operation to it. Finally we would have
to insert the elements back into the original array in the correct positions.
That is a lot of overhead just to be able use utilize SSE2 instructions on
columns.

7.2.5 Blocks of operations

The ability to create blocks of code which would utilize SIMD instructions
would also have been a nice addition to CIPṪhis would open up the ability
to define certain variables that would have the same operation applied to
them at the same time through the use of SSE2 instructions. The problem

74 Conclusion and discussion 7

Figure F7-2: Illustration of vertical selection of array and assignment.

with it though was that it would require a lot more analysis and a different
way of traveling the nodes of the AST representing the block.

7.2.6 Runtime environment

A runtime environment would allow for more dynamic solutions across the
whole system, from better overflow checks to saving array sizes to making
out-of-bounds exceptions. This would open up opportunities for the system
to develop better debugging tools. The downside is that it would intro-
duce an extra layer of software which would take up some additional system
resources.

7.2.7 Evolutionary approach

While our working process could be considered a mixture of the evolution-
ary approach with the constructive approach, it was mainly focused around
the evolutionary approach. Halfway through our project, we decided to re-
construct our compiler from scratch. At that point we decided it would be
beneficial to model it properly so that everyone had a clear idea of what
our compiler should look like 5.2. That was a huge benefit and greatly sim-
plified our working process. In retrospect, this is probably something we
should have done in the beginning. Something to remember though is that
we did not have all the knowledge needed to properly model a compiler at
the beginning of the project. This is something that we can and should do
next time we work on a compiler.

Appendices

APPENDIX A
Context-Free Grammar

A context-free grammar documenting the syntax of the programming lan-
guage CIP is presented here, written in Extended Backus-Naur notation [31].
Non-terminal symbols are enclosed in 〈〉, and terminal symbols are written
with a Bold font.

A.1 The grammar

〈CIP〉 → 〈Statements〉
〈Statements〉 → 〈Statement〉 { 〈Statement〉 }
〈Statement〉 → ((〈Assignment〉 | 〈Print〉 | 〈Declarations〉 | 〈ProcedureReturn〉) ;
) | 〈Command〉 | 〈Procedure〉

〈Declarations〉 → [const] 〈Datatype〉 〈Declaration〉 { , 〈Declaration〉 }
〈Declaration〉 → 〈Var〉 [= 〈AssignmentValue〉]

〈Procedure〉 → procedure (〈Datatype〉 | void) id 〈FormalParameters〉 〈Statements〉
end
〈FormalParameters〉 → ([〈FormalParameter〉 { , 〈FormalParameter〉 }])
〈FormalParameter〉 → 〈Datatype〉 [] id
〈ProcedureReturn〉 → return 〈Expressions〉

〈Datatype〉 → Int | Float
〈Int〉 → int8 | int16 | (int | int32) | int64
〈Float〉 → (float | float32) | float64

〈Var〉 → id [〈Index〉 [〈IndexRange〉] | 〈ActualParameters〉]
〈ActualParameters〉 → ([Expressions] { , Expressions })
〈Index〉 → [〈Expressions〉] { [〈Expressions〉] }
〈IndexRange〉 → :: [〈Expressions〉]

〈Assignment〉 → Var [= AssignmentValue]
〈AssignmentValue〉 → 〈Expressions〉 | 〈AssignmentRange〉
〈AssignmentRange〉 → { 〈AssignmentValue〉 { , 〈AssignmentValue〉 } }

〈Expressions〉 → 〈LogicalOr〉
〈Expression〉 → (〈Expressions〉) | 〈Value〉
〈Not〉 → 〈Expression〉 | - 〈Expression〉 | ! 〈Expression〉
〈MultiplyDivide〉 → 〈Not〉 { (* | / | %) 〈Not〉 }
〈AddMinus〉 → 〈MultiplyDivide〉 { (+ | -) 〈MultiplyDivide〉 }
〈GreaterLesser〉 → 〈AddMinus〉 { (< | <= | > | >=) 〈AddMinus〉 }
〈EqualorNot〉 → 〈GreaterLesser〉 { (== | !=) 〈GreaterLesser〉 }
〈LogicalAnd〉 → 〈EqualorNot〉 { && 〈EqualorNot〉 }
〈LogicalOr〉 → 〈LogicalAnd〉 { || 〈LogicalAnd〉 }

〈Print〉 → (print — println)(Value〈out val〉 — string)
〈Value〉 → inum | fnum | 〈Var〉

〈Command〉 → 〈Loop〉 | 〈If〉
〈Loop〉 → while (〈Expressions〉) [〈Statements〉] end
〈If〉 → if (〈Expressions〉) 〈Statements〉 [else 〈Statements〉] end

78 Context-Free Grammar A

APPENDIX B
Cip example programs

This section contains example programs written in the programming lan-
guage CIP. The programs are used to showcase the various features that the
language supports and demonstrates how to implement known algorithms.

B.1 Hello world

1 // Prints hello world

2 print "Hello World\n";

3
4 // Print with a implicit newline

5 println "Hello World";

Source code B.1: Hello world in CIP.

B.2 Cross product

1 /*
2 * Calculates the cross product of two vectors.

3 */

4
5 procedure void CrossProduct(int8[] A, int8[] B, int8[] C

)

6
7 // 2 * 6 - 3 * 5 = 12 - 15 = -3

8 C[0] = (A[1] * B[2]) - (A[2] * B[1]);

9
10 // 3 * 4 - 1 * 6 = 12 - 6 = 6

11 C[1] = (A[2] * B[0]) - (A[0] * B[2]);

12
13 // 1 * 5 - 2 * 4 = 5 - 8 = -3

14 C[2] = (A[0] * B[1]) - (A[1] * B[0]);

15
16 end
17
18 int8 Array1 [3] = {1,2,3}, Array2 [3] = {4,5,6}, Array3 [3]

= {0,0,0};

19
20 // returns array [3] = {-3,6,-3}.

21 CrossProduct(Array1 , Array2 , Array3);

22
23 // Prints the result

24 print Array3 [0]; print Array3 [1]; print Array3 [2];

80 Cip example programs B

Source code B.2: Computation of the cross product in CIP.

B.3 Fibonacci

1 /* This program will find all the even Fibonacci

2 * numbers that are less than four million

3 * and print the sum of all these.

4 */
5
6 int fib1 = 1, fib2 = 2;

7 int result = 0;

8
9 procedure int fibonacci (int fib1 , int fib2 , int result)

10 if(fib2 > 4000000)

11 return result;

12 else

13 if(fib2 % 2 == 0)

14 result = result + fib2;

15 end

16 return fibonacci(fib2 , (fib1 + fib2), result);

17 end

18 end
19
20 println "The sum of all even -valued fibonacci numbers

with a value below four million is:";

21 println fibonacci(fib1 , fib2 , result);

Source code B.3: Computation of Fibonacci numbers in CIP.

B.4 Euclidean

1 /*
2 * Three different implementations of Euclid ’s algorithm.

3 * One based on addition , one based on subtraction , and

one based on recursion.

4 * http ://en.wikipedia.org/wiki/Euclidean_algorithm#

Implementations

5 */

6
7 // Procedure declarations

8 procedure int gcdAddition(int a, int b)

9
10 int t;

11
12 while (b != 0)

13 t = b;

14 b = a % b;

15 a = t;

16 end

17
18 return a;

19 end
20

B.5 Pythagorean triplets 81

21 procedure int gcdSubtraction(int a, int b)

22
23 if (a == 0)

24 return b;

25 end

26
27 while (b != 0)

28 if (a > b)

29 a = a - b;

30 else

31 b = b - a;

32 end

33 end

34
35 return a;

36 end
37
38 procedure int gcdRecursive(int a, int b)

39
40 if (b == 0)

41 return a;

42 else

43 return gcdRecursive(b, a % b);

44 end

45 end
46
47 //Main program

48 int x, y;

49 int gcda , gcds , gcdr;

50
51x = 123; y = 481;

52
53 gcda = gcdAddition(x,y);

54 gcds = gcdSubtraction(x,y);

55 gcdr = gcdRecursive(x,y);

56
57 println "Input was:";

58 print x; print " "; print y;

59
60 // Multiple newlines for pretty formating

61 print "\n\n";

62
63 println "The procedures made the following result";

64 print gcda; print " "; print gcds; print " "; print gcdr;

65
66 print "\n";

Source code B.4: Computation of greatest common divisor in CIP.

B.5 Pythagorean triplets

1 procedure int64 calculate ()

2 int64 a = 0;

3 int64 b = 0;

4 int64 c = 0;

5
6 while (c <= 1000)

82 Cip example programs B

7 while (b <= c)

8 while (a <= b)

9 if((a < b) && (b < c) && ((a*a) + (b*b) == (c*c))

&& ((a + b + c) == 1000))

10 return (a * b * c);

11 end

12 a = a + 1;

13 end

14 b = b + 1;

15 a = 0;

16 end

17 c = c + 1;

18 b = 0;

19 end

20
21 return 0;

22 end
23
24 println "The product of the only pythagorean triplet for

which a + b + c = 1000 is:";

25 println calculate ();

Source code B.5: Computes pythagorean triplets in CIP.

B.6 Matrix manipulation

1 /*
2 * Does some simple matrix calculations.

3 */

4
5 int8 Array1 [3] = {1,2,3}, Array2 [3] = {4,5,6};

6 int8 Vector [3][1] = {{7} ,{7} ,{7}};

7 int8 Matrix [3][3] = {{1,1,1},{1,1,1},{1,1,1}};

8
9 // returns array [3] = {4 ,10 ,18}.

10 Array1 = Array1 * Array2;

11
12 // returns array [3] = {0,1,1};

13 Array1 = Array1 > Array2;

14
15 Matrix [2][0]::[2] = Array2 [0]::[2];

16 Matrix [1][0]::[2] = Matrix [0][0]::[2] *

17 Matrix [2][0]::[2];

18
19 // returns array [3] = {1,0,0}.

20 Array1 = !Array1;

21
22 // returns array [3] = {-1,0,0}.

23 Array1 = -Array1;

24
25 // Prints strings or variables

26 print "Hello World!";

27 print Matrix [1][1];

Source code B.6: Index range operations in CIP.

84 Cip example programs B

APPENDIX C
Formal semantics for CIP

This is the documentation of the formal semantic for scalar and array oper-
ations in the CIP programming language, semantic rules not concerned with
data parallelism have been omitted, but is reminiscent of the ones described
in [32]. For a more thorough explanation of the environment store model
used in the rules and the most interesting of the semantic rules see section
4.2.1 and F4-3.

C.1 Formal Semantics

[Plus]
envV , sto ` a1 →a v1 envV , sto ` a2 →a v2

envV , sto ` a1 + a2 →a v
where v = v1 + v2

[ArrayDecl]

〈DA, env
′′
V , sto[l1 7→ v1] · · · [ln 7→ vn]〉 →DA

(env′V , sto
′)

〈y[a] := {a1 · · · an};DA, envV , sto〉 →DA
(env′V , sto

′)

where envV , sto ` a1 →a v1..an →a vn

and l1 = envV next

and l2 = new l1

...

and ln = new ln

and env′′V = envV [y 7→ l][next 7→ new ln]

[ArrayLoc] envV , sto ` y →A l where envV y = l

[ArrayIndex]
envV , sto ` y →A l

envV , sto ` y[a]→a v
where sto l + a = v

86 Formal semantics for CIP C

[ArrayArrayAss]

envV , envP ` 〈y := A, sto〉 →s sto[l1 7→ v1][l
′
1 7→ v2][l

′′
1 7→ v3][l

′′′
1 7→ v4]

where l1 = envV y and sto l2 = v1

and l′1 = new l1 and l′2 = new l2 and sto l′2 = v2

and l′′1 = new l′1 and l′′2 = new l′2 and sto l′′2 = v3

and l′′′1 = new l′′1 and l′′′2 = new l′′2 and sto l′′′2 = v4

[ArrayScalarAss]

envV , envP ` 〈y := a, sto〉 →s sto[l 7→ v][l′ 7→ v][l′′ 7→ v][l′′′ 7→ v]

where envV , sto ` a→ avandenvV y = l

and l′ = new l and l′′ = new l′ and l′′′ = new l′′

[ArrayIndexAss]

envV , envP ` 〈y[a1] := a2, sto〉 →s sto[l′ 7→ v]

where envV , sto ` a2 →a v

and l = envV y and l′ = l + a1

[ArrayScalarAdd]

envV , sto ` A→A l envV , sto ` a→a v2
envV , sto ` A + a→E V

where v1 = sto l and v[0] = v1 + v2

and l′ = new l and v′1 = sto l′ and v[1] = v′1 + v2

and l′′ = new l′ and v′′1 = sto l′′ and v[2] = v′′1 + v2

and l′′′ = new l′′ and v′′′1 = sto l′′′ and v[2] = v′′′1 + v2

[ArrayArrayAdd]

envV , sto ` A1 →A l1 envV , sto ` A2 →A l2
envV , sto ` A1 + A2 → V

where v1 = sto l1 and v2 = sto l2 and V [0] = v1 + v2

and l′1 = new l1 and l′2 = new l2

and v′1 = sto l′1 and v′2 = sto l′2 and V [1] = v′1 + v′2

and l′′1 = new l′1 and l′′2 = new l′2

and v′′1 = sto l′′1 and v′′2 = sto l′′2 and V [2] = v′′1 + v′′2

and l′′′1 = new l′′1 and l′′′2 = new l′2

and v′′′1 = sto l′′′1 and v′′′2 = sto l′′′2 and V [3] = v′′′1 + v′′′2

C.1 Formal Semantics 87

[ProcCallV alue]

env′V [x 7→ l][next 7→ new l], env′P [p 7→ (S, x, env′V , env
′
P)] ` 〈S, sto[l 7→ v]〉 → sto′

envV , envP ` 〈p(a), sto〉 → sto′

where envP p = (S, x, env′V , env
′
P)

and envV , sto ` a→a v

and l = envV next

[ProcCallRef]

env′V [y1 7→ l][next 7→ l′], env′′P ` 〈S, sto〉 → sto′

envV , envP ` 〈p(y2), sto〉 → sto′

where envP p = (S, y1, env
′
V , env

′
P), envV y = l

and l′ = envV next

and env′′P = envP [p 7→ (S, y1, env
′
V , env

′
P)]

[RangeOp]

envv, sto ` y →A l

envv, sto ` y[a1] :: [a2]→A l′

where l′ = l + a1

Bibliography

[1] Saleh Omran M. Hassaballah and Youssef B. Mahdy. A review of
simd multimedia extensions and their usage in scientific and engi-
neering applications. The Computer Journal, 51(6), 2008. http:

//comjnl.oxfordjournals.org/content/51/6/630.full.pdf. 9, 11,
12

[2] Shameem Akhter and Jason Roberts. Multi-Core Programming: In-
creasing Performance through Software Multi-threading. Intel Press,
2006. ISBN 978-0-976-48324-3. 11

[3] Jon Stokes. Simd architectures. http://arstechnica.com/old/

content/2000/03/simd.ars, 2000. 12

[4] Rastislav Bod́ık. Compiler construction: 14th international conference,
CC 2005, held as part of the Joint European Conferences on Theory
and Practice of Software. Springer, 2005. ISBN 978-3-54-025411-9. 11

[5] Vishal Choudhary Anteneh A. Abbo, Richard P. Kleihorst and
Leo Sevat. Power consumption of performance-scaled simd proces-
sors. http://www.springerlink.com/content/0hwqkmrtkv86nmq1/

fulltext.pdf, 2004. 12

[6] Christoffer Wright. Simd programming. http://softpixel.com/

~cwright/programming/simd/, 2010. 12, 14, 15, 16, 17

[7] Xvid codec overview. http://www.xvid.org/Project-Info.46.0.

html, 2012. 14

[8] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
1:Basic Architecture, December 2011. http://download.intel.com/

products/processor/manual/253665.pdf. 16, 17, 42

[9] Intel. Extending the world’s most popular processor architecture.
2006. http://download.intel.com/technology/architecture/

new-instructions-paper.pdf. 16, 17

[10] The GNU Project. Using the gnu compiler collection. http://gcc.

gnu.org/onlinedocs/gcc-4.6.3/gcc/, 2010. 18, 19, 20

[11] Dorit Nuzman and Ayal Zaks. Outer-loop vectorization - revisited for
short simd architectures. 2008. http://dl.acm.org/citation.cfm?

id=1454119&dl=ACM&coll=DL. 18

[12] The GNU Project. Auto-vectorization in gcc. http://gcc.gnu.org/

projects/tree-ssa/vectorization.html, 2011. 19

[13] Agner Fog. The microarchitecture of intel, amd and via cpus an
optimization guide for assembly programmers and compiler makers.

http://comjnl.oxfordjournals.org/content/51/6/630.full.pdf
http://comjnl.oxfordjournals.org/content/51/6/630.full.pdf
http://arstechnica.com/old/content/2000/03/simd.ars
http://arstechnica.com/old/content/2000/03/simd.ars
http://www.springerlink.com/content/0hwqkmrtkv86nmq1/fulltext.pdf
http://www.springerlink.com/content/0hwqkmrtkv86nmq1/fulltext.pdf
http://softpixel.com/~cwright/programming/simd/
http://softpixel.com/~cwright/programming/simd/
http://www.xvid.org/Project-Info.46.0.html
http://www.xvid.org/Project-Info.46.0.html
http://download.intel.com/products/processor/manual/253665.pdf
http://download.intel.com/products/processor/manual/253665.pdf
http://download.intel.com/technology/architecture/new-instructions-paper.pdf
http://download.intel.com/technology/architecture/new-instructions-paper.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.6.3/gcc/
http://gcc.gnu.org/onlinedocs/gcc-4.6.3/gcc/
http://dl.acm.org/citation.cfm?id=1454119&dl=ACM&coll=DL
http://dl.acm.org/citation.cfm?id=1454119&dl=ACM&coll=DL
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://gcc.gnu.org/projects/tree-ssa/vectorization.html

90 BIBLIOGRAPHY

Technical report, Copenhagen University College of Engineering, 2012.
http://www.agner.org/optimize/microarchitecture.pdf. 21

[14] Rajiv Kapoor. Avoiding the cost of branch mispre-
diction. http://software.intel.com/en-us/articles/

avoiding-the-cost-of-branch-misprediction/, 2009. 21

[15] Advanced Micro Devices. Amd64 architecture programmer’s manual
volume 1:application programming. Technical report, 2009. 21

[16] Agner Fog. Optimizing subroutines in assembly language an optimiza-
tion guide for x86 platforms. Technical report, Copenhagen Univer-
sity College of Engineering, 2012. http://www.agner.org/optimize/

optimizing_assembly.pdf. 21, 22

[17] Randal E. Bryant and David O’Hallaron. Computer Systems A Pro-
grammers Perspective. Pearson, second edition edition, 2011. ISBN
978-0-13-713336-9. 22

[18] Calvin Lin and Lawrence Snyder. Principles of Parallel Programming.
Pearson Education, Inc, 2009. ISBN 978-0-321-54942-6. 22, 23

[19] The SCandAL project. Nesl: A parallel programming language. http:
//www.cs.cmu.edu/~scandal/nesl.html, 2012. 23

[20] The ZPL team. Overview. http://www.cs.washington.edu/

research/zpl/overview/overview.html, 2004. 24

[21] Lawrence Snyder. A programmers guide to zpl. www.cs.washington.

edu/research/zpl/zpl_guide.pdf, 1999. 24

[22] Community. Mono.simd namespace. http://docs.go-mono.com/

?link=N:Mono.Simd, 2012. 26

[23] Jaewook Shin. Simd programming by expansion. 2007. www.mcs.anl.

gov/uploads/cels/papers/P1425.pdf. 26

[24] Sablecc. http://sablecc.org/, 2011. 26

[25] Java compiler compiler. http://javacc.java.net/, 2012. 27

[26] Hanspeter Mössenböck, Markus Löberbauer, and Albrecht Wöß. The
compiler generator coco/r. http://ssw.jku.at/Coco/, 2011. 27

[27] Doug Brown, John Levine, and Tony Mason. Lex & yacc, Second Edi-
tion. O’Reilly Media, Inc., 1992. ISBN 978-1-56592-000-2. 27

[28] The Flex Project. flex: The fast lexical analyser. flex.sourceforge.net,
2008. 27

[29] Michael Petter. Cup user’s manual. www2.cs.tum.edu/projects/cup/
manual.html, 2006. 27

[30] Gerwin Klein. Jflex user’s manual. http://jflex.de/manual.html,
2009. 27

[31] Robert W. Sebesta. Concepts of Programming Languages. Pearson,
ninth edition edition, 2009. ISBN 978-0-13-246558-8. 30, 43, 77

http://www.agner.org/optimize/microarchitecture.pdf
http://software.intel.com/en-us/articles/avoiding-the-cost-of-branch-misprediction/
http://software.intel.com/en-us/articles/avoiding-the-cost-of-branch-misprediction/
http://www.agner.org/optimize/optimizing_assembly.pdf
http://www.agner.org/optimize/optimizing_assembly.pdf
http://www.cs.cmu.edu/~scandal/nesl.html
http://www.cs.cmu.edu/~scandal/nesl.html
http://www.cs.washington.edu/research/zpl/overview/overview.html
http://www.cs.washington.edu/research/zpl/overview/overview.html
www.cs.washington.edu/research/zpl/zpl_guide.pdf
www.cs.washington.edu/research/zpl/zpl_guide.pdf
http://docs.go-mono.com/?link=N:Mono.Simd
http://docs.go-mono.com/?link=N:Mono.Simd
www.mcs.anl.gov/uploads/cels/papers/P1425.pdf
www.mcs.anl.gov/uploads/cels/papers/P1425.pdf
http://sablecc.org/
http://javacc.java.net/
http://ssw.jku.at/Coco/
www2.cs.tum.edu/projects/cup/manual.html
www2.cs.tum.edu/projects/cup/manual.html
http://jflex.de/manual.html

BIBLIOGRAPHY 91

[32] Hans Hüttel. Transitions and Trees - An Introduction to Structural
Operational Semanntics. Cambridge, 2010. ISBN 978-0-521-14709-5.
34, 35, 43, 85

[33] Tim Hoolihan. Static vs dynamic scope. http://hoolihan.net/

blog-tim/2009/02/17/static-vs-dynamic-scope/, 2009. 43

[34] Tiobe index. http://www.tiobe.com/index.php/content/

paperinfo/tpci/index.html, 2012. 44, 45, 46

[35] Michaël Van Canneyt. Free pascal: Reference guide. http://www.

freepascal.org/docs-html/ref/ref.html, 2011. 45

[36] Corrado Böhm and Guiseppe Jacopini. Flow diagrams, turing ma-
chines and languages with only two formation rule. http://dl.acm.

org/citation.cfm?doid=355592.365646, 1966. 46

[37] Miran Lipovača. Learn you a haskell for great good!: A beginner’s guide.
http://learnyouahaskell.com/, 2011. ISBN 978-1-593-27283-8. 46

[38] Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen, and Jan
Stage. Objekt orienteret analyse & design. Marko, 2001. ISBN 978-87-
7751-153-0. 47

[39] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994. ISBN 978-0-201-63361-0. 47, 49

[40] oodesign. http://www.oodesign.com/, 2012. 47, 48, 49, 50

[41] dofactory. http://www.dofactory.com/, 2012. 47, 48, 49

[42] Charles N. Fisher, Ron K. Cytron, and Richer J. LeBlanc, Jr. Crafting
a Compiller. Pearson, 2010. ISBN 978-0-13-801785-9. 53, 55, 72

http://hoolihan.net/blog-tim/2009/02/17/static-vs-dynamic-scope/
http://hoolihan.net/blog-tim/2009/02/17/static-vs-dynamic-scope/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.freepascal.org/docs-html/ref/ref.html
http://www.freepascal.org/docs-html/ref/ref.html
http://dl.acm.org/citation.cfm?doid=355592.365646
http://dl.acm.org/citation.cfm?doid=355592.365646
http://learnyouahaskell.com/
http://www.oodesign.com/
http://www.dofactory.com/

	Introduction
	Initial problem
	Single Instruction, Multiple Data
	SIMD extensions
	Problem statement

	Analysis
	Streaming SIMD Extensions
	Utilising SSE through GCC
	Manual optimisation of code using SSE instructions
	Branching
	Existing solutions
	Compiler construction tools

	Design decisions
	General language design decisions
	Compiler implementation language
	Target language
	Parser generator

	Language design
	Design philosophy
	Operational semantics for CIP
	Our language
	Contextual rules
	Language changes

	Compiler architecture
	Design patterns
	Compiler model

	Test of compiler
	Testing Methods
	CIP Benchmark

	Conclusion and discussion
	Conclusion
	Discussion

	Context-Free Grammar
	The grammar

	Cip example programs
	Hello world
	Cross product
	Fibonacci
	Euclidean
	Pythagorean triplets
	Matrix manipulation

	Formal semantics for CIP
	Formal Semantics

	Bibliography

