
Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

CIP: The Programming Language
A general purpose programming language with SIMD capabilities

D406F12

Aalborg University

June, 2012

Author E-mail

Christoffer Moesgaard cmoesg10@student.aau.dk
Daniel Hillerström dhille10@student.aau.dk
Daniel Rune Jensen drje10@student.aau.dk
Eric Vignola Ruder eruder10@student.aau.dk
Mathias Ruggaard Pedersen mrpe10@student.aau.dk
Kimmo Andersen kander10@student.aau.dk
Søren Kejser Jensen skje10@student.aau.dk

D406F12 Aalborg University

CIP: The Programming Language 1 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Table of Contents

1 Introduction
About the project
Problem statement

2 Language

3 Visitors

4 Code generation

5 Improvements, corrections and problems

6 Demonstration

7 Conclusion

D406F12 Aalborg University

CIP: The Programming Language 2 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

About the project

About the project

CIP Computing in Parallel

An imperative general purpose programming language

SIMD capabilities

Inspired by ZPL

D406F12 Aalborg University

CIP: The Programming Language 3 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Problem statement

Problem Statement

SIMD has been proven faster under the right circumstances

Programmer should focus on problem at hand

Ideally, SIMD has to be faster than SISD

How may we design and implement a programming language that utilises the
concepts of SIMD?

D406F12 Aalborg University

CIP: The Programming Language 4 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Problem statement

Problem Statement

How can such a language be formalised?

Which data types should be established?

How can we design constructs that are easy for the compiler to generate
SIMD instructions from?

How can we encourage the programmer to use these constructs?

How does the performance of our compiler compare with already
established compilers?

D406F12 Aalborg University

CIP: The Programming Language 5 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Table of Contents

1 Introduction

2 Language
Design philosophy
CIP language design

3 Visitors

4 Code generation

5 Improvements, corrections and problems

6 Demonstration

7 Conclusion

D406F12 Aalborg University

CIP: The Programming Language 6 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Design philosophy

Design philosophy

Data parallelism without encumbering the programmer

Focus on being productive

C-like syntax with enhanced readability

Arrays as first-class citizens

Procedures can not return arrays

D406F12 Aalborg University

CIP: The Programming Language 7 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

CIP language design

Contextual rules

int8, int16, int32, int64, float32, float64

Static type checking and type binding

No implicit or explicit casting between the two primitives

Implicit casting from smaller primitive to larger primitive

Static scope rules

D406F12 Aalborg University

CIP: The Programming Language 8 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

CIP language design

Control flow

While loop

while (a < 10)

...

end

If-else statement

if (b < 10)

...

else

...

end

D406F12 Aalborg University

CIP: The Programming Language 9 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

CIP language design

Procedures

Declaration

procedure void proc(float a, int[] B)

...

end

Procedure call

foo(2.0, C);

D406F12 Aalborg University

CIP: The Programming Language 10 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

CIP language design

Arrays

Declaration

int8 Array2[3] = {4,5,6};

int8 Vector[3][1] = {{7},{7},{7}};

int8 Matrix[3][3] = {{1,1,1},{1,1,1},{1,1,1}};

D406F12 Aalborg University

CIP: The Programming Language 11 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

CIP language design

Array range operator

Matrix[2][0]::[2] = Array2[0]::[2];

D406F12 Aalborg University

CIP: The Programming Language 12 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

CIP language design

Array range multiplication

Matrix[1][0]::[2] = Matrix[0][0]::[2] * Matrix[2][0]::[2];

D406F12 Aalborg University

CIP: The Programming Language 13 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

CIP language design

Array operators

Binary operators

int32 Array1[4] = {1,2,3,4}, Array2[4] = {5,6,7,8};

Array1[0]::[3] = Array1[0]::[3] * Array2[0]::[3];

Array1[0]::[3] = Array1[0]::[3] > Array2[0]::[3];

Unary operators

int8 Array1[3] = {1,2,3};

Array1[0]::[2] = !Array1[0]::[2];

Array1[0]::[2] = -Array1[0]::[2];

D406F12 Aalborg University

CIP: The Programming Language 14 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Table of Contents

1 Introduction

2 Language

3 Visitors
Our visitors
Declaration visitor
Type check visitor
Declaration example
Type checking example

4 Code generation

5 Improvements, corrections and problems

6 Demonstration

7 Conclusion

D406F12 Aalborg University

CIP: The Programming Language 15 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Our visitors

Our visitors

Traversing the AST.

Visitor design pattern.

Reflective visitor.

Twelve visitors:
Pretty print.
Error and warning checks.
Decorating the AST.
Code generation.

D406F12 Aalborg University

CIP: The Programming Language 16 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Declaration visitor

Declaration visitor

Two visitors for analysing variable declaration and use.

Declaration visitor:
Goes through all declaration nodes.
If the variable is not in the symbol table, add to symbol table.
If it is, issue an ”already declared” error.

CheckIdentifier visitor:
Goes through all variable nodes.
If variable is in symbol table, continue as normal.
If not, issue a ”variable not declared” error.

D406F12 Aalborg University

CIP: The Programming Language 17 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Type check visitor

Type check visitor

Three visitors take care of type checking.

TypeCheck:
Checks type correctness.
Throws TypeError if types are incompatible.

Types do not match.
Modulo used with float.
Left-hand side is procedure.

GeneralizeType:
Generalises types after types have been verified as correct.
int8 + int32 → int32 + int32.

TypeAdder:
Adds type information to relevant nodes.

D406F12 Aalborg University

CIP: The Programming Language 18 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Declaration example

An example: Declaration visitor

Declaration example

procedure void proc()

int a = 5;

end

D406F12 Aalborg University

CIP: The Programming Language 19 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Declaration example

An example: Declaration visitor
Abstract Syntax Tree

D406F12 Aalborg University

CIP: The Programming Language 20 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Declaration example

An example: Declaration visitor
Abstract Syntax Tree

Open new scope (global).

D406F12 Aalborg University

CIP: The Programming Language 20 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Declaration example

An example: Declaration visitor
Abstract Syntax Tree

Save procedure in current
scope.

Open new scope (proc).

Save parameters in new scope.

D406F12 Aalborg University

CIP: The Programming Language 20 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Declaration example

An example: Declaration visitor
Abstract Syntax Tree

Insert into current scope.

Throw error if already declared.

D406F12 Aalborg University

CIP: The Programming Language 20 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Declaration example

An example: Declaration visitor
Abstract Syntax Tree

Check if already declared.

D406F12 Aalborg University

CIP: The Programming Language 20 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Declaration example

An example: Declaration visitor
Abstract Syntax Tree

Check if already declared.

D406F12 Aalborg University

CIP: The Programming Language 20 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Type checking example

An example: TypeCheck visitor

Type checking example

int a = 1;

float b = 1.0;

a = b + 1;

D406F12 Aalborg University

CIP: The Programming Language 21 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Type checking example

An example: TypeCheck visitor

Abstract Syntax Tree

D406F12 Aalborg University

CIP: The Programming Language 22 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Type checking example

An example: TypeCheck visitor

Abstract Syntax Tree

Visit left and right subtree.

Throw error if types are
incompatible.

TypeError At Line: 4, Column:
7.

D406F12 Aalborg University

CIP: The Programming Language 22 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Type checking example

An example: TypeCheck visitor

Abstract Syntax Tree

Return data type.

D406F12 Aalborg University

CIP: The Programming Language 22 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Type checking example

An example: TypeCheck visitor

Abstract Syntax Tree

Propagate type up the tree.

D406F12 Aalborg University

CIP: The Programming Language 22 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Type checking example

An example: TypeCheck visitor

Abstract Syntax Tree

Visit left and right subtree.

Throw error if types are
incompatible.

TypeError At Line: 4, Column:
3.

D406F12 Aalborg University

CIP: The Programming Language 22 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Type checking example

An example: TypeCheck visitor

Abstract Syntax Tree

Return data type.

D406F12 Aalborg University

CIP: The Programming Language 22 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Type checking example

An example: TypeCheck visitor

Abstract Syntax Tree

Return data type.

D406F12 Aalborg University

CIP: The Programming Language 22 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Table of Contents

1 Introduction

2 Language

3 Visitors

4 Code generation
How it is being carried out
Operations
Array allocation

5 Improvements, corrections and problems

6 Demonstration

7 Conclusion

D406F12 Aalborg University

CIP: The Programming Language 23 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

How it is being carried out

Code generation for CIP

Key notes about the code generation:

The code generator is yet another visitor.

The generated code is a mix of GCC extended C and inline assembly code.

Generally about the code generation:

The AST is being traversed differently.

Attempts to exploit the C-like syntax of CIP.

Specific code is generated during every node visit.

D406F12 Aalborg University

CIP: The Programming Language 24 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

How it is being carried out

Code emission

When is code being emitted?

Procedure declarations: The procedure signature and body is emitted
independently.

Variable declarations: Whenever a variable declaration node is visited.

Scalar operations: Only when an assignment operation node is visited.

Array operations: At every binary operation node visit.

Loops and ifs: Like procedures.

D406F12 Aalborg University

CIP: The Programming Language 25 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

How it is being carried out

An example program

Example program

// Declarations
// Scalars
int32 a = 1, b = 2, c = 3;
// Arrays
int32 A[8] = {1, 2, 3, 4, 5, 6, 7, 8},

B[4] = {2, 4, 6, 8};
int32 C[2][4];

// Scalar binary operation
a = a + b + c;

// Array binary operation
C[1][0]::[3] = A[4]::[7] - (A[0]::[3] + B[0]::[3]);

// Array unary operation (ignore the assignment)
A[0]::[3] = -A[0]::[3];

D406F12 Aalborg University

CIP: The Programming Language 26 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

Scalar unary & binary operations

Important notes:

Exploits the C-like syntax of CIP.

Conducts a postorder traversal of the AST.

Only emits code at assignment operations.

D406F12 Aalborg University

CIP: The Programming Language 27 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Scalar binary operation

Abstract Syntax Tree
Assume:

a, b and c is already declared.

Emitted code

(a = ((a + b) + c));

D406F12 Aalborg University

CIP: The Programming Language 28 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Scalar binary operation

Abstract Syntax Tree
Assume:

a, b and c is already declared.

Emitted code

(a = ((a + b) + c));

D406F12 Aalborg University

CIP: The Programming Language 28 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Scalar binary operation

Abstract Syntax Tree
Assume:

a, b and c is already declared.

Emitted code

(a = ((a + b) + c));

D406F12 Aalborg University

CIP: The Programming Language 28 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Scalar binary operation

Abstract Syntax Tree
Assume:

a, b and c is already declared.

Emitted code

(a = ((a + b) + c));

D406F12 Aalborg University

CIP: The Programming Language 28 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Scalar binary operation

Abstract Syntax Tree
Assume:

a, b and c is already declared.

Emitted code

(a = ((a + b) + c));

D406F12 Aalborg University

CIP: The Programming Language 28 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Scalar binary operation

Abstract Syntax Tree
Assume:

a, b and c is already declared.

Emitted code

(a = ((a + b) + c));

D406F12 Aalborg University

CIP: The Programming Language 28 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Scalar binary operation

Abstract Syntax Tree
Assume:

a, b and c is already declared.

Emitted code

(a = ((a + b) + c));

D406F12 Aalborg University

CIP: The Programming Language 28 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Scalar binary operation

Abstract Syntax Tree
Assume:

a, b and c is already declared.

Emitted code

(a = ((a + b) + c));

D406F12 Aalborg University

CIP: The Programming Language 28 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

Array binary operations

A little bit trickier.

Assembly code emission.

Cannot exploit the syntax similarities as well as scalar operations.

Have to maintain an array for the result of the computations.

Has to make sure all desired elements are computed.

An interesting point

So all operations on arrays are performed in parallel?

No, but mostly yes.
Not all operations have SIMD/SSE2 instructions

OK, OK, so all operations that HAVE SIMD instructions are performed in
parallel? No, but mostly yes.

D406F12 Aalborg University

CIP: The Programming Language 29 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

Array binary operations

A little bit trickier.

Assembly code emission.

Cannot exploit the syntax similarities as well as scalar operations.

Have to maintain an array for the result of the computations.

Has to make sure all desired elements are computed.

An interesting point

So all operations on arrays are performed in parallel?

No, but mostly yes.
Not all operations have SIMD/SSE2 instructions

OK, OK, so all operations that HAVE SIMD instructions are performed in
parallel? No, but mostly yes.

D406F12 Aalborg University

CIP: The Programming Language 29 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

Array binary operations

A little bit trickier.

Assembly code emission.

Cannot exploit the syntax similarities as well as scalar operations.

Have to maintain an array for the result of the computations.

Has to make sure all desired elements are computed.

An interesting point

So all operations on arrays are performed in parallel? No, but mostly yes.

Not all operations have SIMD/SSE2 instructions

OK, OK, so all operations that HAVE SIMD instructions are performed in
parallel? No, but mostly yes.

D406F12 Aalborg University

CIP: The Programming Language 29 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

Array binary operations

A little bit trickier.

Assembly code emission.

Cannot exploit the syntax similarities as well as scalar operations.

Have to maintain an array for the result of the computations.

Has to make sure all desired elements are computed.

An interesting point

So all operations on arrays are performed in parallel? No, but mostly yes.
Not all operations have SIMD/SSE2 instructions

OK, OK, so all operations that HAVE SIMD instructions are performed in
parallel? No, but mostly yes.

D406F12 Aalborg University

CIP: The Programming Language 29 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

Array binary operations

A little bit trickier.

Assembly code emission.

Cannot exploit the syntax similarities as well as scalar operations.

Have to maintain an array for the result of the computations.

Has to make sure all desired elements are computed.

An interesting point

So all operations on arrays are performed in parallel? No, but mostly yes.
Not all operations have SIMD/SSE2 instructions

OK, OK, so all operations that HAVE SIMD instructions are performed in
parallel?

No, but mostly yes.

D406F12 Aalborg University

CIP: The Programming Language 29 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

Array binary operations

A little bit trickier.

Assembly code emission.

Cannot exploit the syntax similarities as well as scalar operations.

Have to maintain an array for the result of the computations.

Has to make sure all desired elements are computed.

An interesting point

So all operations on arrays are performed in parallel? No, but mostly yes.
Not all operations have SIMD/SSE2 instructions

OK, OK, so all operations that HAVE SIMD instructions are performed in
parallel? No, but mostly yes.

D406F12 Aalborg University

CIP: The Programming Language 29 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

An example: Array binary operation

Abstract Syntax Tree
Assume:

A, B is an 1D-array.

C is a 2D-array.

Emitted code

long var1 = (3 + 1);

long var2 = (var1 - (var1 % sizeof(signed int)));

signed int* ptr1 = cip_resultarray(var1, sizeof(signed int)));

signed int* ptr2 = &A[0];

signed int* ptr3 = &B[0];

asm(‘‘/*...*/ paddd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr2, src2: ptr3 */);

for (var2; var2 < var1; var2++) ptr1[var2] = ptr2[var2] + ptr3[var2];

long var3 = (3 + 1);

long var4 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr4 = &A[3];

signed int* ptr5 = ptr1;

asm(‘‘/*...*/ psubd %%xmm1, %%xmm0 /*...*/’’

/* dest: ptr1, src1: ptr4, src2: ptr5 */);

for (var4; var4 < var3; var4++) ptr1[var4] = ptr4[var4] + ptr5[var4];

long var5 = (3 + 1);

long var6 = (var3 - (var3 % sizeof(signed int)));

signed int* ptr6 = &C[1][0];

signed int* ptr7 = ptr5;

asm(‘‘/*...*/ movaps %xmm0, %[dest] /*...*/’’

/* dest: ptr6, src1: ptr7 */);

for (var6; var6 < var5; var5++) ptr6[var6] = ptr7[var6];

D406F12 Aalborg University

CIP: The Programming Language 30 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Operations

Array unary operations

Two different unary operators:

Logical not (!): Generates assembly code and leftovers handle.

Negation (-): Simulates a binary operation: −1 ∗ A.

D406F12 Aalborg University

CIP: The Programming Language 31 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Array allocation

Array allocation

We use a pseudo-memory management system to maintain heap allocated
arrays.
Code generation considerations about array allocations:

Allocations in row-major-fashion.

Side effects during allocations.

D406F12 Aalborg University

CIP: The Programming Language 32 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Array allocation

Allocation side effect example

Example code

int i = 1;
procedure int p() i = i + 1; return i; end
int A[4][p()];

Näıve attempt at code generation

// Declarations
signed int i = 1;
int p() { i = i + 1; return i; }
signed int **A;
// Allocation of first dimension
signed int var1 = 0;
for (var1; var1 < 1; var1++) *A = cip_alloc(4, sizeof(signed int));
// Allocation of second dimension
signed int var2 = 0;
for (var2; var2 < 4; var2++) **A = cip_alloc(p(), sizeof(signed int));

D406F12 Aalborg University

CIP: The Programming Language 33 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Array allocation

Allocation side effect example

Example code

int i = 1;
procedure int p() i = i + 1; return i; end
int A[4][p()];

Näıve attempt at code generation

// Declarations
signed int i = 1;
int p() { i = i + 1; return i; }
signed int **A;

// Allocation of first dimension
signed int var1 = 0;
for (var1; var1 < 1; var1++) *A = cip_alloc(4, sizeof(signed int));
// Allocation of second dimension
signed int var2 = 0;
for (var2; var2 < 4; var2++) **A = cip_alloc(p(), sizeof(signed int));

D406F12 Aalborg University

CIP: The Programming Language 33 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Array allocation

Allocation side effect example

Example code

int i = 1;
procedure int p() i = i + 1; return i; end
int A[4][p()];

Näıve attempt at code generation

// Declarations
signed int i = 1;
int p() { i = i + 1; return i; }
signed int **A;
// Allocation of first dimension
signed int var1 = 0;
for (var1; var1 < 1; var1++) *A = cip_alloc(4, sizeof(signed int));

// Allocation of second dimension
signed int var2 = 0;
for (var2; var2 < 4; var2++) **A = cip_alloc(p(), sizeof(signed int));

D406F12 Aalborg University

CIP: The Programming Language 33 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Array allocation

Allocation side effect example

Example code

int i = 1;
procedure int p() i = i + 1; return i; end
int A[4][p()];

Näıve attempt at code generation

// Declarations
signed int i = 1;
int p() { i = i + 1; return i; }
signed int **A;
// Allocation of first dimension
signed int var1 = 0;
for (var1; var1 < 1; var1++) *A = cip_alloc(4, sizeof(signed int));
// Allocation of second dimension
signed int var2 = 0;
for (var2; var2 < 4; var2++) **A = cip_alloc(p(), sizeof(signed int));

D406F12 Aalborg University

CIP: The Programming Language 33 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Array allocation

Allocation side effect example

Example code

int i = 1;
procedure int p() i = i + 1; return i; end
int A[4][p()];

Better attempt at code generation

// Declarations
signed int i = 1;
int p() { i = i + 1; return i; }
signed int **A;

// Allocation of first dimension
signed int var1 = 0, var2 = 1, var3 = 4;
for (var1; var1 < var2; var1++) *A = cip_alloc(var3, sizeof(signed int));
// Allocation of second dimension
signed int var4 = 0, var5 = p();
for (var4; var4 < var3; var4++) **A = cip_alloc(var5, sizeof(signed int));

D406F12 Aalborg University

CIP: The Programming Language 33 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Array allocation

Allocation side effect example

Example code

int i = 1;
procedure int p() i = i + 1; return i; end
int A[4][p()];

Better attempt at code generation

// Declarations
signed int i = 1;
int p() { i = i + 1; return i; }
signed int **A;
// Allocation of first dimension
signed int var1 = 0, var2 = 1, var3 = 4;
for (var1; var1 < var2; var1++) *A = cip_alloc(var3, sizeof(signed int));

// Allocation of second dimension
signed int var4 = 0, var5 = p();
for (var4; var4 < var3; var4++) **A = cip_alloc(var5, sizeof(signed int));

D406F12 Aalborg University

CIP: The Programming Language 33 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Array allocation

Allocation side effect example

Example code

int i = 1;
procedure int p() i = i + 1; return i; end
int A[4][p()];

Better attempt at code generation

// Declarations
signed int i = 1;
int p() { i = i + 1; return i; }
signed int **A;
// Allocation of first dimension
signed int var1 = 0, var2 = 1, var3 = 4;
for (var1; var1 < var2; var1++) *A = cip_alloc(var3, sizeof(signed int));
// Allocation of second dimension
signed int var4 = 0, var5 = p();
for (var4; var4 < var3; var4++) **A = cip_alloc(var5, sizeof(signed int));

D406F12 Aalborg University

CIP: The Programming Language 33 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Table of Contents

1 Introduction

2 Language

3 Visitors

4 Code generation

5 Improvements, corrections and problems
Improvements
Corrections
Known problems

6 Demonstration

7 Conclusion

D406F12 Aalborg University

CIP: The Programming Language 34 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Improvements

Syntax errors

Errors produced by the parser were originally handled by the parser itself.

The parser now adds them to the compiler’s exception handler.

D406F12 Aalborg University

CIP: The Programming Language 35 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Improvements

Syntax errors

Errors produced by the parser were originally handled by the parser itself.

The parser now adds them to the compiler’s exception handler.

D406F12 Aalborg University

CIP: The Programming Language 35 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Improvements

Result array

Memory for the result array was always reallocated, despite its size.

This approach was unnecessary as the array might be reusable.

Memory allocation is now only done if a larger result array is needed.

Has its own drawbacks when large and small arrays are used together.

More benchmarks would be needed to show which approach is best suited.

D406F12 Aalborg University

CIP: The Programming Language 36 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Improvements

Result array

Memory for the result array was always reallocated, despite its size.

This approach was unnecessary as the array might be reusable.

Memory allocation is now only done if a larger result array is needed.

Has its own drawbacks when large and small arrays are used together.

More benchmarks would be needed to show which approach is best suited.

D406F12 Aalborg University

CIP: The Programming Language 36 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Improvements

Result array

Memory for the result array was always reallocated, despite its size.

This approach was unnecessary as the array might be reusable.

Memory allocation is now only done if a larger result array is needed.

Has its own drawbacks when large and small arrays are used together.

More benchmarks would be needed to show which approach is best suited.

D406F12 Aalborg University

CIP: The Programming Language 36 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Improvements

Result array

Memory for the result array was always reallocated, despite its size.

This approach was unnecessary as the array might be reusable.

Memory allocation is now only done if a larger result array is needed.

Has its own drawbacks when large and small arrays are used together.

More benchmarks would be needed to show which approach is best suited.

D406F12 Aalborg University

CIP: The Programming Language 36 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Improvements

Result array

Memory for the result array was always reallocated, despite its size.

This approach was unnecessary as the array might be reusable.

Memory allocation is now only done if a larger result array is needed.

Has its own drawbacks when large and small arrays are used together.

More benchmarks would be needed to show which approach is best suited.

D406F12 Aalborg University

CIP: The Programming Language 36 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

Inline assembler is now also generated for all comparison operations.

A single element from an array can now be returned by procedures.

The correct type is now used for temporary variables and pointers.

Code for logical negation is now produced correctly for arrays.

The check for floats as array indexes is now only done on array indexes.

Use of the range operator on an array passed to a procedure is now
verified correctly.

D406F12 Aalborg University

CIP: The Programming Language 37 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

Inline assembler is now also generated for all comparison operations.

A single element from an array can now be returned by procedures.

The correct type is now used for temporary variables and pointers.

Code for logical negation is now produced correctly for arrays.

The check for floats as array indexes is now only done on array indexes.

Use of the range operator on an array passed to a procedure is now
verified correctly.

D406F12 Aalborg University

CIP: The Programming Language 37 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

Inline assembler is now also generated for all comparison operations.

A single element from an array can now be returned by procedures.

The correct type is now used for temporary variables and pointers.

Code for logical negation is now produced correctly for arrays.

The check for floats as array indexes is now only done on array indexes.

Use of the range operator on an array passed to a procedure is now
verified correctly.

D406F12 Aalborg University

CIP: The Programming Language 37 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

Inline assembler is now also generated for all comparison operations.

A single element from an array can now be returned by procedures.

The correct type is now used for temporary variables and pointers.

Code for logical negation is now produced correctly for arrays.

The check for floats as array indexes is now only done on array indexes.

Use of the range operator on an array passed to a procedure is now
verified correctly.

D406F12 Aalborg University

CIP: The Programming Language 37 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

Inline assembler is now also generated for all comparison operations.

A single element from an array can now be returned by procedures.

The correct type is now used for temporary variables and pointers.

Code for logical negation is now produced correctly for arrays.

The check for floats as array indexes is now only done on array indexes.

Use of the range operator on an array passed to a procedure is now
verified correctly.

D406F12 Aalborg University

CIP: The Programming Language 37 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

Inline assembler is now also generated for all comparison operations.

A single element from an array can now be returned by procedures.

The correct type is now used for temporary variables and pointers.

Code for logical negation is now produced correctly for arrays.

The check for floats as array indexes is now only done on array indexes.

Use of the range operator on an array passed to a procedure is now
verified correctly.

D406F12 Aalborg University

CIP: The Programming Language 37 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

Operations involving scalars and arrays now use the array as input.

int a = 10;

int A[5] = {1, 2, 3, 4, 5};

A[0]::[4] = A[0]::[4] * 10;

Assignment between arrays and scalars is no longer possible at all.

scalar = Array[0]::[4];

Array[0]::[4] = scalar;

D406F12 Aalborg University

CIP: The Programming Language 38 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

Operations involving scalars and arrays now use the array as input.

int a = 10;

int A[5] = {1, 2, 3, 4, 5};

A[0]::[4] = A[0]::[4] * 10;

Assignment between arrays and scalars is no longer possible at all.

scalar = Array[0]::[4];

Array[0]::[4] = scalar;

D406F12 Aalborg University

CIP: The Programming Language 38 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

Operations involving scalars and arrays now use the array as input.

int a = 10;

int A[5] = {1, 2, 3, 4, 5};

A[0]::[4] = A[0]::[4] * 10;

Assignment between arrays and scalars is no longer possible at all.

scalar = Array[0]::[4];

Array[0]::[4] = scalar;

D406F12 Aalborg University

CIP: The Programming Language 38 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

Operations involving scalars and arrays now use the array as input.

int a = 10;

int A[5] = {1, 2, 3, 4, 5};

A[0]::[4] = A[0]::[4] * 10;

Assignment between arrays and scalars is no longer possible at all.

scalar = Array[0]::[4];

Array[0]::[4] = scalar;

D406F12 Aalborg University

CIP: The Programming Language 38 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

The dimensions of an actual parameter are now checked correctly.

procedure void proc(int[][] A)

print "I am a procedure";

end

int Array[5] = {1, 2, 3, 4, 5};

proc(Array);

A range operator used on an actual parameter now generates correct code.

proc(Array[3]::[4]);

proc(Array[3]);

D406F12 Aalborg University

CIP: The Programming Language 39 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

The dimensions of an actual parameter are now checked correctly.

procedure void proc(int[][] A)

print "I am a procedure";

end

int Array[5] = {1, 2, 3, 4, 5};

proc(Array);

A range operator used on an actual parameter now generates correct code.

proc(Array[3]::[4]);

proc(Array[3]);

D406F12 Aalborg University

CIP: The Programming Language 39 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

The dimensions of an actual parameter are now checked correctly.

procedure void proc(int[][] A)

print "I am a procedure";

end

int Array[5] = {1, 2, 3, 4, 5};

proc(Array);

A range operator used on an actual parameter now generates correct code.

proc(Array[3]::[4]);

proc(Array[3]);

D406F12 Aalborg University

CIP: The Programming Language 39 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Corrections

Corrections

The dimensions of an actual parameter are now checked correctly.

procedure void proc(int[][] A)

print "I am a procedure";

end

int Array[5] = {1, 2, 3, 4, 5};

proc(Array);

A range operator used on an actual parameter now generates correct code.

proc(Array[3]::[4]);

proc(Array[3]);

D406F12 Aalborg University

CIP: The Programming Language 39 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Known problems

Known problems

The result of array comparisons is not consistent.

Not a problem as our language does not contain bitwise operators.

The result array is shared between scopes which could give side effects.

Only a problem if operations in the new scopes use the result array.

Assembly code generated from scalar and array computations of type int8
contains some errors.

This can sometimes result in memory corruption or incorrect results.

D406F12 Aalborg University

CIP: The Programming Language 40 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Known problems

Known problems

The result of array comparisons is not consistent.

Not a problem as our language does not contain bitwise operators.

The result array is shared between scopes which could give side effects.

Only a problem if operations in the new scopes use the result array.

Assembly code generated from scalar and array computations of type int8
contains some errors.

This can sometimes result in memory corruption or incorrect results.

D406F12 Aalborg University

CIP: The Programming Language 40 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Known problems

Known problems

The result of array comparisons is not consistent.

Not a problem as our language does not contain bitwise operators.

The result array is shared between scopes which could give side effects.

Only a problem if operations in the new scopes use the result array.

Assembly code generated from scalar and array computations of type int8
contains some errors.

This can sometimes result in memory corruption or incorrect results.

D406F12 Aalborg University

CIP: The Programming Language 40 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Known problems

Known problems

The result of array comparisons is not consistent.

Not a problem as our language does not contain bitwise operators.

The result array is shared between scopes which could give side effects.

Only a problem if operations in the new scopes use the result array.

Assembly code generated from scalar and array computations of type int8
contains some errors.

This can sometimes result in memory corruption or incorrect results.

D406F12 Aalborg University

CIP: The Programming Language 40 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Known problems

Known problems

The result of array comparisons is not consistent.

Not a problem as our language does not contain bitwise operators.

The result array is shared between scopes which could give side effects.

Only a problem if operations in the new scopes use the result array.

Assembly code generated from scalar and array computations of type int8
contains some errors.

This can sometimes result in memory corruption or incorrect results.

D406F12 Aalborg University

CIP: The Programming Language 40 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Known problems

Known problems

The result of array comparisons is not consistent.

Not a problem as our language does not contain bitwise operators.

The result array is shared between scopes which could give side effects.

Only a problem if operations in the new scopes use the result array.

Assembly code generated from scalar and array computations of type int8
contains some errors.

This can sometimes result in memory corruption or incorrect results.

D406F12 Aalborg University

CIP: The Programming Language 40 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Table of Contents

1 Introduction

2 Language

3 Visitors

4 Code generation

5 Improvements, corrections and problems

6 Demonstration
CIP example program

7 Conclusion

D406F12 Aalborg University

CIP: The Programming Language 41 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

CIP example program

Compiler Flags

Fibonacci

Array Arithmetic

D406F12 Aalborg University

CIP: The Programming Language 42 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Table of Contents

1 Introduction

2 Language

3 Visitors

4 Code generation

5 Improvements, corrections and problems

6 Demonstration

7 Conclusion
Summary
Discussion

D406F12 Aalborg University

CIP: The Programming Language 43 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Summary

How may we design and implement a programming language that utilises the
concepts of SIMD

Programing language

SIMD capabilities

Improvements and corrections

Still some problems

D406F12 Aalborg University

CIP: The Programming Language 44 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Summary

Language goals

Data parallelism without encumbering the programmer

Focus on being productive

Arrays as first-class

D406F12 Aalborg University

CIP: The Programming Language 45 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Summary

CIP compared to C

Time utility

Two equivalent program for each data type

Test of int32

D406F12 Aalborg University

CIP: The Programming Language 46 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Summary

CIP test code for int32

procedure void FillArray(int32[] array, int32 n)

int32 i = 0;

while (i < n)

array[i] = 128;

i = i + 1;

end

end

int32 i = 134217728;

int32 A[i], B[i];

FillArray(A, i);

FillArray(B, i);

A[0]::[i-1] = A[0]::[i-1] + B[0]::[i-1];

D406F12 Aalborg University

CIP: The Programming Language 47 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Summary

C test code for int32

#include <stdio.h>

#include <stdlib.h>

#include "stklib.h"

#include "cipalloclib.h"

void fill_array(int array[], int n) {

int i = 0;

while(i < n) {

array[i] = 128;

i = i + 1;

}

}

int main() {

int i,j;

j = 134217728;
D406F12 Aalborg University

CIP: The Programming Language 48 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Summary

C test code for int32 continued

int *A = cip_alloc(j, sizeof(int));

int *B = cip_alloc(j, sizeof(int));

int *C = cip_alloc(j, sizeof(int));

fill_array(A, j);

fill_array(B, j);

for(i=0; i < j; i++){

A[i] = A[i] + B[i];

}

for(i=0; < j; i++){

C[i] = A[i];

}

cip_free();

return 0;

}
D406F12 Aalborg University

CIP: The Programming Language 49 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Summary

Int32 test results in seconds

1.5 GB allocated
data type C CIP

32-bit Integer 2.397 1.493

D406F12 Aalborg University

CIP: The Programming Language 50 / 51

Introduction Language Visitors Code generation Improvements, corrections and problems Demonstration Conclusion

Discussion

LL(k) or LALR instead of LL(1)

Memory management

Expand SIMD to contructs

Implementation of bitwise operations

Return array from procedures

D406F12 Aalborg University

CIP: The Programming Language 51 / 51

	Introduction
	About the project
	Problem statement

	Language
	Design philosophy
	CIP language design

	Visitors
	Our visitors
	Declaration visitor
	Type check visitor
	Declaration example
	Type checking example

	Code generation
	How it is being carried out
	Operations
	Array allocation

	Improvements, corrections and problems
	Improvements
	Corrections
	Known problems

	Demonstration
	CIP example program

	Conclusion
	Summary
	Discussion

