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Water in – water out – how ?Water in – water out – how ?
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Necessary Components
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Embedded ComputersEmbedded Computers

90 % of all computers are embedded90 % of all computers are embedded
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A cyber-physical systemA cyber-physical system

“Cyber-Physical Systems (CPS) are integrations of “Cyber-Physical Systems (CPS) are integrations of 
computation and physical processes” 

[Lee, 2007][Lee, 2007]

Plant /Device

(Problem Domain)(Problem Domain)

Actuators

Sensors

Actuators

Embedded Computer 

(Application Domain)

Peter Marwedel: Embedded System Design: 

Embedded Systems Foundations  of  Cyber-Physical Systems
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Embedded Systems Foundations  of  Cyber-Physical Systems

(2nd edition) Springer-Verlag, 2011.



Engineering - who does what ?Engineering - who does what ?

Environment/Context

• mechanics

• chemistry

materials

Plant 

(Problem Domain)

• materials

• biology

• ...

Actuators

Embedded Computer 

Sensors

•Embedded Computer 

(Application Domain)

•

• control

• electronics

•

• hardware

• software
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• software



A robot -
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Robot – CP-systemRobot – CP-system

Environment/Context
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(Heisel, T., et al, Weed Research, 1996, Vol. 36: 325-337 )
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The ConceptsThe Concepts

Time, PositionTime, Position

Job !

Field 

Farm Management

(October 1999)
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API main objectsAPI main objects

Farm - manager Station - operator

Platform

Implement

Platform

How do we make it a system ?How do we make it a system ?
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Object Oriented Analysis and Design Object Oriented Analysis and Design 

1. Identfy the Problem Domain (Plant in Context)1. Identfy the Problem Domain (Plant in Context)

- rich picture

- system definition

- plant model and identification- plant model and identification

2. Identify the Application Domain (Functionality/Control)

- functions (use cases)- functions (use cases)

- temporal constraints 

- interfaces to the plant (actuators and sensors)- interfaces to the plant (actuators and sensors)

3. Design

- architecture- architecture

...

MDD, SysML, …
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MDD, SysML, …
Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen and Jan Stage, Object-oriented Analysis and Design, 

MARKO Publishing, Aalborg 2000.



A note on robot architectureA note on robot architecture
Deliberative

Reactive
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Embedded SoftwareEmbedded Software
“Embedded software is software integrated with physical processes. 

The technical problem is managing time and concurrency in computational The technical problem is managing time and concurrency in computational 

systems”. 
E. A, Lee: The future of embedded software,

ARTEMIS Conference, Graz, 2006.

Characteristics of a 
Real-Time Embedded SystemReal-Time Embedded System

• Timing Constraints

• Dependability Requirements• Dependability Requirements

• Concurrent control of separate components 

• Facilities to interact with special purpose hardware• Facilities to interact with special purpose hardware

Alan Burns and Andy Wellings: 

Real-Time Systems:  Ada 95, Real-Time Java and Real-Time POSIX
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Real-Time Systems:  Ada 95, Real-Time Java and Real-Time POSIX

(4th ed), Addison-Wesley, 2010



C versus JavaC versus Java

C

• Well known

• Mature compilers

Java

• Yet new

• Mature compilers

• Close to the processor

• Liberal typing and checks

• Mostly interpreted

• Platform independent

Object oriented
• Liberal typing and checks

• Object oriented

• Strict typing and checks

• Concurrency• Concurrency

• Automatic Memory allocation•Timing Constraints

•Dependability Requirements•Dependability Requirements

•Concurrent control of separate components 

•Facilities to interact with special purpose hardware•Facilities to interact with special purpose hardware
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C dominates embedded software C dominates embedded software 

programming  - why?

”The UNIX kernel consists of about 10.000 

lines of C code and about 1.000 lines of lines of C code and about 1.000 lines of 

assembly code.  assembly code.  

The assembly code can be further broken down into 200 lines 

included for efficiency (they could have been written in C) 

and 800 lines to perform hardware functions not possible 

in C.”

K. Thompson: UNIX Implementation, 

The Bell System Technical Journal, 57, 6, 1978The Bell System Technical Journal, 57, 6, 1978
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Real-Time Java

- timing and memory constraints- timing and memory constraints

• Real-Time Specification for Java (2002), • Real-Time Specification for Java (2002), 
Java Community Process, JSR-1 – real-time specification for Java.

high resultion time, clocks,  real-time threads, schedulers, high resultion time, clocks,  real-time threads, schedulers, 

memory areas

• Ravenscar Java: A high-integrity profile for • Ravenscar Java: A high-integrity profile for 
real-time Java (2005) Jagun Kwon, Andy Wellings, Steve King

restrictions on threads, schedulers, memory areas

• Safety Critical Java (2013?) Java Community Process, • Safety Critical Java (2013?) Java Community Process, 

predictability and analyzability
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Safety Critical JavaSafety Critical Java

• Periodic Event Handlers• Periodic Event Handlers

• Aperiodic Event Handlers

collected in a Missioncollected in a Mission

Each handler 

� has a private Memory� has a private Memory

� is Scheduled

A mission

� has a mission Memory with � has a mission Memory with 

synchronized shared objects 
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Level 0: cyclic executiveLevel 0: cyclic executive
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Cyclic ExecutiveCyclic Executive

Table driven static schedulingTable driven static scheduling

Minor 

Cycle

Task Period WCET

a 25 10
25 a, b, c

Dispatch Table
Cycle

GCD()

a 25 10

b 25 8

c 50 5

25 a b, d, e

25 a, b, c

25 a, b, d
d 50 4

e 100 2

25 a, b, d

Major CycleMajor Cycle

SCM()
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A. Burns and A. Wellings: Real-Time Systems and Programming Languages, Ch 11.1



Level 0 – Safety Critical JavaLevel 0 – Safety Critical Java

public final class CyclicSchedule {public final class CyclicSchedule {

CyclicSchedule(Frame [] frames) { … }CyclicSchedule(Frame [] frames) { … }

public final class Frame

Frame(RelativeTime duration,      Frame(RelativeTime duration,      

PeriodicEventHandler [] handlers)PeriodicEventHandler [] handlers)

25 a, b, c

25 a b, d, e25 a b, d, e

25 a, b, c

25 a, b, d
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25 a, b, d



HandlersHandlers

public PeriodicEventHandler(public PeriodicEventHandler(

PriorityParameters priority, 

PeriodicParameters release, 

StorageParameters storage)StorageParameters storage)

public abstract void handleAsyncEvent();public abstract void handleAsyncEvent();
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Periodic ParametersPeriodic Parameters

public class PeriodicParameters {public class PeriodicParameters {

public PeriodicParameters(RelativeTime start, public PeriodicParameters(RelativeTime start, 
RelativeTime period)

{ … }{ … }

public PeriodicParameters(RelativeTime start, 
RelativeTime period,RelativeTime period,

RelativeTime deadline, 

AperiodicEventHandler missHandler)AperiodicEventHandler missHandler)

{ … }
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Priority ParametersPriority Parameters

public class PriorityParameters extends public class PriorityParameters extends 
SchedulingParameters {

public PriorityParameters(int priority)

{ … }{ … }

PriorityScheduler.instance(). getMaxPriority()

PriorityScheduler.instance(). getMinPriority()

24



Level 1: fixed-priority preemptive scheduler

SO 3 has the 

highest priority
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MissionsMissions
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Analysing R-T properties for FPPAnalysing R-T properties for FPP
B

C

Worst-case blocking time for the process 

Worst-case computation time (WCET) C

D

I

Worst-case computation time (WCET) 

Deadline of the process 

The interference time of the processI

P

R

The interference time of the process

Priority assigned to the process 

Worst-case response time of the process R

T

Worst-case response time of the process 

Minimum time between releases(process period)

27



Summary of TopicsSummary of Topics

• Cyber-physical systems• Cyber-physical systems

• Robots• Robots

• OOAD

• Robot Architecture• Robot Architecture

• R-T Programs• R-T Programs

• R-T Program Schedulability Analysis
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