
Cyber-Physical Systems,Cyber-Physical Systems,

RobotsRobots

and and

Embedded Software in Java

Anders P. RavnAnders P. Ravn

Aalborg University

BEST Summer schoolBEST Summer school

July 2013

1

JAcknowledgement: Jens Lyngsø, Piotr Makowski, Jan D. Bendtsen, Thomas Bak, Hans J.

Andersen, Svend Christensen, Thomas Bygholm, Tomas Kalibera, Stephan Korsholm, René

R.Hansen, Martin Schoeberl, Hans Søndergaard, and Bent Thomsen.

Water in – water out – how ?Water in – water out – how ?

2

Necessary Components

3

Embedded ComputersEmbedded Computers

90 % of all computers are embedded90 % of all computers are embedded

4

A cyber-physical systemA cyber-physical system

“Cyber-Physical Systems (CPS) are integrations of “Cyber-Physical Systems (CPS) are integrations of
computation and physical processes”

[Lee, 2007][Lee, 2007]

Plant /Device

(Problem Domain)(Problem Domain)

Actuators

Sensors

Actuators

Embedded Computer

(Application Domain)

Peter Marwedel: Embedded System Design:

Embedded Systems Foundations of Cyber-Physical Systems

5

Embedded Systems Foundations of Cyber-Physical Systems

(2nd edition) Springer-Verlag, 2011.

Engineering - who does what ?Engineering - who does what ?

Environment/Context

• mechanics

• chemistry

materials

Plant

(Problem Domain)

• materials

• biology

• ...

Actuators

Embedded Computer

Sensors

•Embedded Computer

(Application Domain)

•

• control

• electronics

•

• hardware

• software

6

• software

A robot -

7

Robot – CP-systemRobot – CP-system

Environment/Context

Plant Plant

Actuator

s

Sensors

s

Embedded Computer

8

Original registrations CAPBP CAPBP 48mMission

6146400

6146500

6146400

6146500

6146200

6146300

6146200

6146300

110

120

130

6146000

6146100

6146200

 0 to 4

 4 to 16

 16 to 28 6146000

6146100

6146200

70

80

90

100

6145900

6146000 16 to 28

 28 to 48

 48 to 140.1

6145900

6146000

30

40

50

60

70

6145700

6145800

6145700

6145800

0

10

20

30

683800 683900 684000 684100 684200 684300

6145600

683800 683900 684000 684100 684200 684300
6145500

6145600

(Heisel, T., et al, Weed Research, 1996, Vol. 36: 325-337)
9

The ConceptsThe Concepts

Time, PositionTime, Position

Job !

Field

Farm Management

(October 1999)
10

API main objectsAPI main objects

Farm - manager Station - operator

Platform

Implement

Platform

How do we make it a system ?How do we make it a system ?

11

Object Oriented Analysis and Design Object Oriented Analysis and Design

1. Identfy the Problem Domain (Plant in Context)1. Identfy the Problem Domain (Plant in Context)

- rich picture

- system definition

- plant model and identification- plant model and identification

2. Identify the Application Domain (Functionality/Control)

- functions (use cases)- functions (use cases)

- temporal constraints

- interfaces to the plant (actuators and sensors)- interfaces to the plant (actuators and sensors)

3. Design

- architecture- architecture

...

MDD, SysML, …

12

MDD, SysML, …
Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen and Jan Stage, Object-oriented Analysis and Design,

MARKO Publishing, Aalborg 2000.

A note on robot architectureA note on robot architecture
Deliberative

Reactive

13

Embedded SoftwareEmbedded Software
“Embedded software is software integrated with physical processes.

The technical problem is managing time and concurrency in computational The technical problem is managing time and concurrency in computational

systems”.
E. A, Lee: The future of embedded software,

ARTEMIS Conference, Graz, 2006.

Characteristics of a
Real-Time Embedded SystemReal-Time Embedded System

• Timing Constraints

• Dependability Requirements• Dependability Requirements

• Concurrent control of separate components

• Facilities to interact with special purpose hardware• Facilities to interact with special purpose hardware

Alan Burns and Andy Wellings:

Real-Time Systems: Ada 95, Real-Time Java and Real-Time POSIX

14

Real-Time Systems: Ada 95, Real-Time Java and Real-Time POSIX

(4th ed), Addison-Wesley, 2010

C versus JavaC versus Java

C

• Well known

• Mature compilers

Java

• Yet new

• Mature compilers

• Close to the processor

• Liberal typing and checks

• Mostly interpreted

• Platform independent

Object oriented
• Liberal typing and checks

• Object oriented

• Strict typing and checks

• Concurrency• Concurrency

• Automatic Memory allocation•Timing Constraints

•Dependability Requirements•Dependability Requirements

•Concurrent control of separate components

•Facilities to interact with special purpose hardware•Facilities to interact with special purpose hardware

15

C dominates embedded software C dominates embedded software

programming - why?

”The UNIX kernel consists of about 10.000

lines of C code and about 1.000 lines of lines of C code and about 1.000 lines of

assembly code. assembly code.

The assembly code can be further broken down into 200 lines

included for efficiency (they could have been written in C)

and 800 lines to perform hardware functions not possible

in C.”

K. Thompson: UNIX Implementation,

The Bell System Technical Journal, 57, 6, 1978The Bell System Technical Journal, 57, 6, 1978

16

Real-Time Java

- timing and memory constraints- timing and memory constraints

• Real-Time Specification for Java (2002), • Real-Time Specification for Java (2002),
Java Community Process, JSR-1 – real-time specification for Java.

high resultion time, clocks, real-time threads, schedulers, high resultion time, clocks, real-time threads, schedulers,

memory areas

• Ravenscar Java: A high-integrity profile for • Ravenscar Java: A high-integrity profile for
real-time Java (2005) Jagun Kwon, Andy Wellings, Steve King

restrictions on threads, schedulers, memory areas

• Safety Critical Java (2013?) Java Community Process, • Safety Critical Java (2013?) Java Community Process,

predictability and analyzability

17

Safety Critical JavaSafety Critical Java

• Periodic Event Handlers• Periodic Event Handlers

• Aperiodic Event Handlers

collected in a Missioncollected in a Mission

Each handler

� has a private Memory� has a private Memory

� is Scheduled

A mission

� has a mission Memory with � has a mission Memory with

synchronized shared objects

18

Level 0: cyclic executiveLevel 0: cyclic executive

19

Cyclic ExecutiveCyclic Executive

Table driven static schedulingTable driven static scheduling

Minor

Cycle

Task Period WCET

a 25 10
25 a, b, c

Dispatch Table
Cycle

GCD()

a 25 10

b 25 8

c 50 5

25 a b, d, e

25 a, b, c

25 a, b, d
d 50 4

e 100 2

25 a, b, d

Major CycleMajor Cycle

SCM()

20

A. Burns and A. Wellings: Real-Time Systems and Programming Languages, Ch 11.1

Level 0 – Safety Critical JavaLevel 0 – Safety Critical Java

public final class CyclicSchedule {public final class CyclicSchedule {

CyclicSchedule(Frame [] frames) { … }CyclicSchedule(Frame [] frames) { … }

public final class Frame

Frame(RelativeTime duration, Frame(RelativeTime duration,

PeriodicEventHandler [] handlers)PeriodicEventHandler [] handlers)

25 a, b, c

25 a b, d, e25 a b, d, e

25 a, b, c

25 a, b, d

21

25 a, b, d

HandlersHandlers

public PeriodicEventHandler(public PeriodicEventHandler(

PriorityParameters priority,

PeriodicParameters release,

StorageParameters storage)StorageParameters storage)

public abstract void handleAsyncEvent();public abstract void handleAsyncEvent();

22

Periodic ParametersPeriodic Parameters

public class PeriodicParameters {public class PeriodicParameters {

public PeriodicParameters(RelativeTime start, public PeriodicParameters(RelativeTime start,
RelativeTime period)

{ … }{ … }

public PeriodicParameters(RelativeTime start,
RelativeTime period,RelativeTime period,

RelativeTime deadline,

AperiodicEventHandler missHandler)AperiodicEventHandler missHandler)

{ … }

23

Priority ParametersPriority Parameters

public class PriorityParameters extends public class PriorityParameters extends
SchedulingParameters {

public PriorityParameters(int priority)

{ … }{ … }

PriorityScheduler.instance(). getMaxPriority()

PriorityScheduler.instance(). getMinPriority()

24

Level 1: fixed-priority preemptive scheduler

SO 3 has the

highest priority

25

MissionsMissions

26

Analysing R-T properties for FPPAnalysing R-T properties for FPP
B

C

Worst-case blocking time for the process

Worst-case computation time (WCET) C

D

I

Worst-case computation time (WCET)

Deadline of the process

The interference time of the processI

P

R

The interference time of the process

Priority assigned to the process

Worst-case response time of the process R

T

Worst-case response time of the process

Minimum time between releases(process period)

27

Summary of TopicsSummary of Topics

• Cyber-physical systems• Cyber-physical systems

• Robots• Robots

• OOAD

• Robot Architecture• Robot Architecture

• R-T Programs• R-T Programs

• R-T Program Schedulability Analysis

28

