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Abstract

We study a fundamental efficiency benefit afforded by delimited control, showing that for certain
higher-order functions, a language with advanced control features offers an asymptotic improvement
in runtime over a language without them. Specifically, we consider the generic count problem in
the context of a pure PCF-like base language λb and an extension λh with general effect handlers.
We prove that λh admits an asymptotically more efficient implementation of generic count than any
implementation in λb. We also show that this gap remains even when λb is extended to a language λa
with affine effect handlers, which is strong enough to encode exceptions, local state, coroutines and
single-shot continuations. This locates the efficiency difference in the gap between ‘single-shot’ and
‘multi-shot’ versions of delimited control.

To our knowledge, these results are the first of their kind for control operators.

1 Introduction

In today’s programming languages we find a wealth of powerful constructs and features —
exceptions, higher-order store, dynamic method dispatch, coroutines, explicit continuations,
concurrency features, Lisp-style ‘quote’ and so on — which may be present or absent
in various combinations in any given language. There are, of course, many important
pragmatic and stylistic differences between languages, but here we are concerned with
whether languages may differ more essentially in their expressive power, according to the
selection of features they contain.

One can interpret this question in various ways. For instance, Felleisen (1991) considers
the question of whether a language L admits a translation into a sublanguage L ′ in a
way which respects not only the behaviour of programs but also aspects of their (global or
local) syntactic structure. If the translation of some L -program into L ′ requires a complete
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2 Asymptotic Speedup via Effect Handlers

global restructuring, we may say that L ′ is in some way less expressive than L . In the
present paper, however, we have in mind even more fundamental expressivity differences
that would not be bridged even if whole-program translations were admitted. These fall
under two headings.

1. Computability: Are there operations of a given type that are programmable in L but
not expressible at all in L ′?

2. Complexity: Are there operations programmable in L with some asymptotic runtime
bound (e.g. O(n2)) that cannot be achieved in L ′?

We may also ask: are there examples of natural, practically useful operations that manifest
such differences? If so, this might be considered as a significant advantage of L over L ′.

If the ‘operations’ we are asking about are ordinary first-order functions — that is, both
their inputs and outputs are of ground type (strings, arbitrary-size integers etc.) — then
the situation is easily summarised. At such types, all reasonable languages give rise to the
same class of programmable functions, namely the Church-Turing computable ones. As for
complexity, the runtime of a program is typically analysed with respect to some cost model
for basic instructions (e.g. one unit of time per array access). Although the realism of such
cost models in the asymptotic limit can be questioned (see, e.g., (Knuth, 1997, Section 2.6)),
it is broadly taken as read that such models are equally applicable whatever programming
language we are working with, and moreover that all respectable languages can represent all
algorithms of interest; thus, one does not expect the best achievable asymptotic run-time for
a typical algorithm to be sensitive to the choice of programming language, except perhaps
in marginal cases.

The situation changes radically, however, if we consider higher-order operations: that
is, programmable operations whose inputs may themselves be programmable operations.
Here it turns out that both what is computable and the efficiency with which it can be
computed can be highly sensitive to the selection of language features present. This is
essentially because a program may interact with a given function only in ways prescribed
by the language (for instance, by applying it to an argument), and typically has no access to
the concrete representation of the function at the machine level.

Most work in this area to date has focused on computability differences. One of the
best known examples is the parallel if operation which is computable in a language
with parallel evaluation but not in a typical ‘sequential’ programming language (Plotkin,
1977). It is also well known that the presence of control features or local state enables
observational distinctions that cannot be made in a purely functional setting: for instance,
there are programs involving ‘call/cc’ that detect the order in which a (call-by-name) ‘+’
operation evaluates its arguments (Cartwright and Felleisen, 1992). Such operations are
‘non-functional’ in the sense that their output is not determined solely by the extension
of their input (seen as a mathematical function N⊥ ×N⊥→N⊥); however, there are also
programs with ‘functional’ behaviour that can be implemented with control or local state
but not without them (Longley, 1999). More recent results have exhibited differences
lower down in the language expressivity spectrum: for instance, in a purely functional
setting à la Haskell, the expressive power of recursion increases strictly with its type
level (Longley, 2018), and there are natural operations computable by recursion but not
by iteration (Longley, 2019). Much of this territory, including the mathematical theory of
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some of the natural definitions of computability in a higher-order setting, is mapped out by
Longley and Normann (2015).

Relatively few results of this character have so far been established on the complexity
side. Pippenger (1996) gives an example of an ‘online’ operation on infinite sequences
of atomic symbols (essentially a function from streams to streams) such that the first n
output symbols can be produced within time O(n) if one is working in an ‘impure’ version
of Lisp (in which mutation of ‘cons’ pairs is admitted), but with a worst-case runtime no
better than Ω(n log n) for any implementation in pure Lisp (without such mutation). This
example was reconsidered by Bird et al. (1997) who showed that the same speedup can
be achieved in a pure language by using lazy evaluation. Another candidate is the familiar
log n overhead involved in implementing maps (supporting lookup and extension) in a pure
functional language (Okasaki, 1999), although to our knowledge this situation has not yet
been subjected to theoretical scrutiny. Jones (2001) explores the approach of manifesting
expressivity and efficiency differences between certain languages by restricting attention to
‘cons-free’ programs; in this setting, the classes of representable first-order functions for the
various languages are found to coincide with some well-known complexity classes.

Our purpose in this paper is to give a clear example of such an inherent complexity
difference higher up in the expressivity spectrum. Specifically, we consider the following
generic count problem, parametric in n: given a boolean-valued predicate P on the space Bn

of boolean vectors of length n, return the number of such vectors q for which P q = true.
We shall consider boolean vectors of any length to be represented by the type Nat→Bool;
thus for each n, we are asking for an implementation of a certain third-order operation

countn : ((Nat→Bool)→Bool)→Nat

Naturally, we do not expect such a generic operation to compete in efficiency with a bespoke
counting operation for some specific predicate, but it is nonetheless interesting to ask how
efficient it is possible to be with this more modular approach.

A naïve implementation strategy, supported by any reasonable language, is simply to
apply P to each of the 2n vectors in turn. A much less obvious, but still purely ‘functional’,
approach inspired by Berger (1990) achieves the effect of ‘pruned search’ where the
predicate allows it (serving as a warning that counterintuitive phenomena can arise in
this territory). This implementation is of interest in its own right and will be discussed in
Section 7. Nonetheless, under a certain natural condition on P (namely that it must inspect
all n components of the given vector before returning), both the above approaches will have
Ω(n2n) runtime.

What we will show is that in a typical call-by-value functional language without advanced
control features, one cannot improve on this: any implementation of countn must necessarily
take time Ω(n2n) on predicates P of a certain kind. Furthermore, we will show that the
same lower bound also applies to a richer language supporting affine effect handlers, which
suffices for the encoding of exceptions, local state, coroutines, and single-shot continuations.
On the other hand, if we move to language with general effect handlers, it becomes possible
to bring the runtime down to O(2n): an asymptotic gain of a factor of n. We also show that
our implementation method transfers to the more familiar generic search problem: that of
returning the list of all vectors q such that P q = true.



139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4 Asymptotic Speedup via Effect Handlers

The idea behind the speedup is easily explained and will already be familiar, at least
informally, to programmers who have worked with multi-shot continuations. Suppose for
example n = 3, and suppose that the predicate P always inspects the components of its
argument in the order 0, 1, 2. A naïve implementation of count3 might start by applying the
given P to q0 = (true, true, true), and then to q1 = (true, true, false). Clearly there is some
duplication here: the computations of P q0 and P q1 will proceed identically up to the point
where the value of the final component is requested. What we would like to do, then, is to
record the state of the computation of P q0 at just this point, so that we can later resume
this computation with false supplied as the final component value in order to obtain the
value of P q1. (Similarly for all other internal nodes in the evident binary tree of boolean
vectors.) Of course, such a ‘backup’ approach is easy to realise if one is implementing a
bespoke search operation for some particular choice of P; but to apply this idea of resuming
previous subcomputations in the generic setting (that is, uniformly in P) requires some
feature such as general effect handlers or multi-shot continuations.

One could also obviate the need for such a feature by choosing to present the predicate P
in some other way, but from our present perspective this would be to move the goalposts:
our intention is precisely to show that our languages differ in an essential way as regards
their power to manipulate data of type (Nat→Bool)→Bool. Indeed, a key aspect of our
approach, inherited from Longley and Normann (2015), is that by allowing ourselves to
fix the way in which data is given to us, we are able to uncover a wealth of interesting
expressivity differences between languages, despite the fact that they are in some sense inter-
encodable. Such an approach also seems reasonable from the perspective of programming in
the large: when implementing some program module one does not always have the freedom
to choose the form or type of one’s inputs, and in such cases, the kinds of expressivity
distinctions we are considering may potentially make a real practical difference.

This idea of using first-class control to achieve ‘backtracking’ has been exploited before
and is fairly widely known (see e.g. (Kiselyov et al., 2005)), and there is a clear programming
intuition that this yields a speedup unattainable in languages without such control features.
Our main contribution in this paper is to provide, for the first time, a precise mathematical
theorem that pins down this fundamental efficiency difference, thus giving formal substance
to this intuition. Since our goal is to give a realistic analysis of the asymptotic runtimes
achievable in various settings, but without getting bogged down in inessential implementa-
tion details, we shall work concretely and operationally with a CEK-style abstract machine
semantics as our basic model of execution time. The details of this model are only explicitly
used for showing that our efficient implementation of generic count with effect handlers
has the claimed O(2n) runtime; but it also plays a background role as our reference model
of runtime for the Ω(n2n) lower bound results, even though we here work mostly with a
simpler kind of operational semantics.

In the first instance, we formulate our results as a comparison between a purely functional
base language λb (a version of call-by-value PCF) and an extension λh with general effect
handlers. This allows us to present the key idea in a simple setting, but we then show how
our runtime lower bound is also applicable to a more sophisticated language λa with affine
effect handlers, intermediate in power between λb and λh and corresponding broadly to
‘single-shot’ uses of delimited control. Our proof involves some general machinery for
reasoning about program evaluation in λa which may be of independent interest.
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In summary, our purpose is to exhibit an efficiency difference between single-shot and
multi-shot versions of delimited control which, in our view, manifests a fundamental
feature of the programming language landscape. Since many widely-used languages do not
support multi-shot control features, this challenges a common assumption that all real-world
programming languages are essentially ‘equivalent’ from an asymptotic point of view. We
also situate our results within a broader context by informally discussing the attainable
efficiency for generic count within a spectrum of weaker languages. We believe that such
results are important not only for a rounded understanding of the relative merits of existing
languages, but also for informing future language design.

For their convenience as structured delimited control operators, we adopt effect han-
dlers (Plotkin and Pretnar, 2013) as our universal control abstraction of choice, but
our results adapt mutatis mutandis to other first-class control abstractions such as
‘call/cc’ (Sperber et al., 2009), ‘control’ (F ) and ’prompt’ (#) (Felleisen, 1988), or ‘shift’
and ‘reset’ (Danvy and Filinski, 1990).

The rest of the paper is structured as follows.

• Section 2 provides an introduction to effect handlers as a programming abstraction.
• Section 3 presents a pure PCF-like language λb and an extension λh with general

effect handlers.
• Section 4 defines abstract machines for λb and λh, yielding a runtime cost model.
• Section 5 introduces the generic count problem and some associated machinery, and

presents an implementation in λh with runtime O(2n) (perhaps with small additional
logarithmic factors according to the precise details of the cost model).

• Section 6 discusses some extensions and variations of the foregoing result, adapting
it to deal with a wider class of predicates and bridging the gap between generic
count and generic search. We also briefly outline how one can use sufficient effect
polymorphism to adapt the result to a setting with a type-and-effect system.

• Section 7 surveys a range of approaches to generic counting in languages weaker
than λh, including the one suggested by Berger (1990), emphasising how the attain-
able efficiency varies according to the language, but observing that none of these
approaches match the O(2n) runtime bound of our effectful implementation.

• Section 8 establishes that any generic count implementation within λb must have
runtime Ω(n2n) on predicates of a certain kind.

• Section 9 refines our definition of λh to yield a language λa for affine effect handlers,
clarifying its relationship to λb and λh.

• Section 10 develops some machinery for reasoning about program evaluation in λa,
and applies this to establish the Ω(n2n) bound for generic count programs in this
language.

• Section 11 reports on experiments showing that the theoretical efficiency difference
we describe is manifested in practice, using implementations in OCaml of various
search procedures.

• Section 12 concludes.

The languages λb and λh are rather minimal versions of previously studied systems — we
only include the machinery needed for illustrating the generic search efficiency phenomenon.
Some of the less interesting proof details are relegated to the appendices.
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6 Asymptotic Speedup via Effect Handlers

Relation to prior work This article is an extended version of the following previously
published paper and Chapter 7 of the first author’s PhD dissertation:

• Hillerström, D., Lindley, S. & Longley, J. (2020) Effects for efficiency: Asymptotic
speedup with first-class control. Proc. ACM Program. Lang. 4(ICFP), 100:1–100:29

• Hillerström, D. (2021) Foundations for Programming and Implementing Effect
Handlers. Ph.D. thesis. The University of Edinburgh, Scotland, UK

The main new contribution in the present version is that we introduce a language λa for
arbitrary affine effect handlers and develop the theory needed to extend our lower bound
result to this language (Section 9), whereas in the previous version, only an extension with
local state was considered. We have also included an account of the Berger search procedure
(Section 7.3), and have simplified our original proof of the Ω(n2n) bound for λb (Section 8).
The benchmarks have been ported to OCaml 5.0 in such a way that the effectful procedures
make use of effect handlers internally (Section 11).

2 Effect handlers primer

Effect handlers were originally studied as a theoretical means to provide a semantics for
exception handling in the setting of algebraic effects (Plotkin and Power, 2001; Plotkin and
Pretnar, 2013). Subsequently they have emerged as a practical programming abstraction for
modular effectful programming (Bauer and Pretnar, 2015; Convent et al., 2020; Kammar
et al., 2013; Kiselyov et al., 2013; Sivaramakrishnan et al., 2021; Leijen, 2017; Hillerström
et al., 2020). In this section we give a short introduction to effect handlers. For a thorough
introduction to programming with effect handlers, we recommend the tutorial by Pretnar
(2015), and as an introduction to the mathematical foundations of handlers, we refer the
reader to the founding paper by Plotkin and Pretnar (2013) and the excellent tutorial paper
by Bauer (2018).

Viewed through the lens of universal algebra, an algebraic effect is given by a signature
Σ of typed operation symbols along with an equational theory that describes the proper-
ties of the operations (Plotkin and Power, 2001). An example of an algebraic effect is
nondeterminism, whose signature consists of a single nondeterministic choice operation:
Σ

def
= {Branch : Unit→Bool}. The operation takes a single parameter of type unit and ulti-

mately produces a boolean value. The pragmatic programmatic view of algebraic effects
differs from the original development as no implementation accounts for equations over
operations yet.

As a simple example, let us use the operation Branch to model a coin toss. Suppose we
have a data type Toss def

= Heads | Tails, then we may implement a coin toss as follows.

toss : Unit→ Toss
toss ⟨⟩= if do Branch ⟨⟩ then Heads else Tails

From the type signature it is clear that the computation returns a value of type Toss. It
is not clear from the signature of toss whether it performs an effect. However, from the
definition, it evidently performs the operation Branch with argument ⟨⟩ using the do-
invocation form. The result of the operation determines whether the computation returns
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either Heads or Tails. Systems such as Effekt (Brachthäuser et al., 2020), Frank (Lindley
et al., 2017; Convent et al., 2020), Helium (Biernacki et al., 2019, 2020), Koka (Leijen,
2017), and Links (Hillerström and Lindley, 2016; Hillerström et al., 2020) include type-
and-effect systems (or in the case of Effekt a capability type system) which track the use of
effectful operations, whilst systems such as Eff (Bauer and Pretnar, 2015) and Multicore
OCaml (Dolan et al., 2015) / OCaml 5 (Sivaramakrishnan et al., 2021) choose not to track
effects in the type system. Our language is closer to the latter two.

An effectful computation may be used as a subcomputation of another computation, e.g.
we can use toss to implement a computation that performs two coin tosses.

tossTwice : Unit→ List Toss
tossTwice ⟨⟩= [toss ⟨⟩, toss ⟨⟩]

We may view an effectful computation as a tree, where the interior nodes correspond to
operation invocations and the leaves correspond to return values. The computation tree for
tossTwice is as follows.

Branch

Branch

[Heads, Heads]

true

[Heads, Tails]

false

true

Branch

[Tails, Heads]

true

[Tails, Tails]

false

false

It models the interaction with the environment. The operation Branch can be viewed as a
query for which the response is either true or false. The response is provided by an effect
handler. As an example, consider the following handler which enumerates the possible
outcomes of two coin tosses.

handle tossTwice ⟨⟩with
val x 7→ [x]
Branch ⟨⟩ r 7→ r true ++ r false

The handle-construct generalises the exceptional syntax of Benton and Kennedy (2001).
This handler has a success clause and an operation clause. The success clause determines
how to interpret the return value of tossTwice, or equivalently how to interpret the leaves
of its computation tree. It lifts the return value into a singleton list. The operation clause
determines how to interpret occurrences of Branch in toss. It provides access to the argument
of Branch (which is unit) and its resumption, r. The resumption is a first-class delimited
continuation which captures the remainder of the tossTwice computation from the invocation
of Branch inside the first instance of toss up to its nearest enclosing handler.

Applying r to true resumes evaluation of tossTwice via the true branch, which
causes another invocation of Branch to occur, resulting in yet another resumption.
Applying this resumption yields a possible return value of [Heads, Heads], which
gets lifted into the singleton list [[Heads, Heads]]. Afterwards, the latter resumption
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is applied false, thus producing the value [[Heads, Tails]]. Before returning to the
first invocation of the initial resumption, the two lists get concatenated to obtain the
intermediary result [[Heads, Heads], [Heads, Tails]]. Thereafter, the initial resumption
is applied to false, which symmetrically returns the list [[Tails, Heads], [Tails, Tails]].
Finally, the two intermediary lists get concatenated to produce the final result
[[Heads, Heads], [Heads, Tails], [Tails, Heads], [Tails, Tails]].

3 Calculi

In this section, we present our base language λb and its extension with effect handlers λh.

3.1 Base calculus

The base calculus λb is a fine-grain call-by-value (Levy et al., 2003) variation of
PCF (Plotkin, 1977). Fine-grain call-by-value is similar to A-normal form (Flanagan et al.,
1993) in that every intermediate computation is named, but unlike A-normal form is closed
under reduction.

The syntax of λb is as follows.

Types A, B, C, D∈ Type ::= Nat |Unit | A→ B | A× B | A + B
Type Environments Γ∈Ctx ::= · | Γ, x : A
Values V, W ∈Val ::= x | k | c | λxA. M | rec f A→B x.M

| ⟨⟩ | ⟨V, W⟩ | inlB V | inrA W
Computations M, N ∈Comp ::= V W | let ⟨x, y⟩= V in N

| case V {inl x 7→M; inr y 7→N}
| return V | let x←M in N

The ground types are Nat and Unit which classify natural number values and the unit value,
respectively. The function type A→ B classifies functions that map values of type A to
values of type B. The binary product type A× B classifies pairs of values whose first and
second components have types A and B respectively. The sum type A + B classifies tagged
values of either type A or B. Type environments Γ map term variables to their types. For
hygiene, we require that the variables appearing in a type environment are distinct.

We let k range over natural numbers and c range over primitive operations on natural
numbers (+,−,=). We let x, y, z range over term variables. For convenience, we also use
f , g, and h for variables of function type, i and j for variables of type Nat, and r to denote
resumptions. The value terms are standard.

All elimination forms are computation terms. Abstraction is eliminated using application
(V W). The product eliminator (let ⟨x, y⟩= V in N) splits a pair V into its constituents and
binds them to x and y, respectively. Sums are eliminated by a case split (case V {inl x 7→
M; inr y 7→N}). A trivial computation (return V) returns value V . The sequencing
expression (let x←M in N) evaluates M and binds the result value to x in N.

The typing rules are those given in Figure 1, along with the familiar Exchange, Weakening
and Contraction rules for environments. (Note that thanks to Weakening we are able to
type terms such as (λxA.(λxB.x)), even though environments are not permitted to contain
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Values
T-VAR

x : A∈ Γ

Γ ⊢ x : A

T-UNIT

Γ ⊢ ⟨⟩ : Unit

T-NAT

k ∈N
Γ ⊢ k : Nat

T-CONST

c : A→ B

Γ ⊢ c : A→ B

T-LAM

Γ, x : A ⊢M : B

Γ ⊢ λxA. M : A→ B

T-REC

Γ, f : A→ B, x : A ⊢M : B

Γ ⊢ rec f A→B x. M : A→ B

T-PROD

Γ ⊢ V : A Γ ⊢W : B

Γ ⊢ ⟨V, W⟩ : A× B

T-INL

Γ ⊢ V : A

Γ ⊢ inlB V : A + B

T-INR

Γ ⊢W : B

Γ ⊢ inrA W : A + B

Computations
T-APP

Γ ⊢ V : A→ B Γ ⊢W : A

Γ ⊢ V W : B

T-SPLIT

Γ ⊢ V : A× B Γ, x : A, y : B ⊢N : C

Γ ⊢ let ⟨x, y⟩= V in N : C

T-CASE

Γ ⊢ V : A + B Γ, x : A ⊢M : C Γ, y : B ⊢N : C

Γ ⊢ case V {inl x 7→M; inr y 7→N} : C

T-RETURN

Γ ⊢ V : A

Γ ⊢ return V : A

T-LET

Γ ⊢M : A Γ, x : A ⊢N : C

Γ ⊢ let x←M in N : C

Fig. 1: Typing Rules for λb

S-APP (λxA. M)V ⇝ M[V/x]
S-APP-REC (rec f A x. M)V ⇝ M[(rec f A x. M)/f , V/x]
S-CONST c V ⇝ return (⌜c⌝ (V))
S-SPLIT let ⟨x, y⟩= ⟨V, W⟩ in N ⇝ N[V/x, W/y]
S-CASE-INL case inlB V {inl x 7→M; inr y 7→N}⇝ M[V/x]
S-CASE-INR case inrA V {inl x 7→M; inr y 7→N}⇝ N[V/y]
S-LET let x← return V in N ⇝ N[V/x]
S-LIFT E [M]⇝ E [N], if M⇝N

Evaluation contexts E ::= [ ] | let x← E in N

Fig. 2: Contextual Small-Step Operational Semantics

duplicate variables.) We require two typing judgements: one for values and the other
for computations. The judgement Γ ⊢□ : A states that a □-term has type A under type
environment Γ, where□ is either a value term (V) or a computation term (M). The constants
have the following types.

{(+), (−)} : Nat×Nat→Nat (=) : Nat×Nat→Unit + Unit
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10 Asymptotic Speedup via Effect Handlers

We give a small-step operational semantics for λb with evaluation contexts in the style of
Felleisen (1987). The reduction relation⇝ is defined on computation terms via the rules
given in Figure 2. The statement M⇝N reads: term M reduces to term N in one step. We
write R+ for the transitive closure of relation R and R∗ for the reflexive, transitive closure of
relation R.

Most often, we are interested in ⇝ as a relation on closed terms. However, we will
sometimes consider it as a relation on terms involving free variables, with the stipulation
that none of these free variables also occur as bound variables within the terms. Since we
never perform reductions under a binder, this means that the notation M[V/x] in our rules
may be taken simply to mean M with V textually substituted for free occurrences of x (no
variable capture is possible). We also take ⌜c⌝ to mean the usual interpretation of constant c
as a meta-level function on closed values.

The type soundness of our system is easily verified. This is subsumed by the property we
shall formally state for the richer language λh in Theorem 1 below.

When dealing with reductions N⇝N′, we shall often make use of the idea that certain
subterm occurrences within N′ arise from corresponding identical subterms of N. For
instance, in the case of a reduction (λxA.M)V⇝M[V/x], we shall say that any subterm
occurrence P within any of the substituted copies of V on the right-hand side is a descendant
of the corresponding subterm occurrence within the V on the left-hand side. (Descendants
are called residuals e.g. in Barendregt (1984).) Similarly, any subterm occurrence Q of
M[V/x] not overlapping with any of these substituted copies of V is a descendant of the
corresponding occurrence of an identical subterm within the M on the left. This notion
extends to the other reduction rules in the evident way; we suppress the formal details. If P′

is a descendant of P, we also say that P is an ancestor of P′. By transitivity we extend these
notions to the relations⇝+ and⇝∗. Note that if N⇝∗ N′, a subterm occurrence in N′ may
have at most one ancestor in N, but a subterm occurrence in N may have many descendants
in N′.

Notation We elide type annotations when clear from context. For convenience we often
write code in direct-style assuming the standard left-to-right call-by-value elaboration into
fine-grain call-by-value (Moggi, 1991; Flanagan et al., 1993). For example, the expression
f (h w) + g ⟨⟩ is syntactic sugar for:

let x← h w in let y← f x in let z← g ⟨⟩ in y + z

We define sequencing of computations in the standard way.

M; N def
= let x←M in N, where x /∈ FV(N)

We make use of standard syntactic sugar for pattern matching. For instance, we write

λ ⟨⟩.M def
= λxUnit.M, where x /∈ FV(M)

for suspended computations, and if the binder has a type other than Unit, we write:

λ_A.M def
= λxA.M, where x /∈ FV(M)
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Computations
T-DO

(ℓ : A→ B)∈ Σ Γ ⊢ V : A

Γ ⊢ do ℓ V : B

T-HANDLE

Γ ⊢M : C Γ ⊢H : C⇒D

Γ ⊢ handle M with H : D

Handlers
T-HANDLER

Hval = {val x 7→M} [Hℓ = {ℓ p r 7→Nℓ}]ℓ∈dom(Σ)

Γ, x : C ⊢M : D [Γ, p : Aℓ, r : Bℓ→D ⊢Nℓ : D](ℓ:Aℓ→Bℓ)∈Σ

Γ ⊢H : C⇒D

Fig. 3: Additional Typing Rules for λh

We use the standard encoding of booleans as a sum:

Bool def
= Unit + Unit true def

= inl ⟨⟩ false def
= inr ⟨⟩

if V then M else N def
= case V {inl ⟨⟩ 7→M; inr ⟨⟩ 7→N}

3.2 Handler calculus

We now define λh as an extension of λb.

Signatures Σ ::= · | {ℓ : A→ B} ∪ Σ

Handler types F ::= C⇒D
Computations M, N ::= · · · | do ℓ V | handle M with H
Handlers H ::= {val x 7→M} | {ℓ p r 7→N} ⊎H

We assume given some fixed effect signature Σ that associates types Σ(ℓ) to finitely many
operation symbols ℓ. An operation type A→ B classifies operations that take an argument
of type A and return a result of type B. A handler type C⇒D classifies effect handlers
that transform computations of type C into computations of type D. Following Pretnar
(2015), we assume a global signature for every program. Computations are extended
with operation invocation (do ℓ V) and effect handling (handle M with H). Handlers are
constructed from one success clause ({val x 7→M}) and one operation clause ({ℓ p r 7→N})
for each operation ℓ in Σ; here the x, p, r are considered as bound variables. Following
Plotkin and Pretnar (2013), we adopt the convention that a handler with missing operation
clauses (with respect to Σ) is syntactic sugar for one in which all missing clauses perform
explicit forwarding:

{ℓ p r 7→ let x← do ℓ p in r x}

The typing rules for λh are those of λb (Figure 1) plus three additional rules for operations,
handling, and handlers given in Figure 3. The T-DO rule ensures that an operation invocation
is only well-typed if the operation ℓ appears in the effect signature Σ and the argument type
A matches the type of the provided argument V . The result type B determines the type of the
invocation. The T-HANDLE rule types handler application. The T-HANDLER rule ensures
that the bodies of the success clause and the operation clauses all have the output type D.
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12 Asymptotic Speedup via Effect Handlers

The type of x in the success clause must match the input type C. The type of the parameter
p (Aℓ) and resumption r (Bℓ→D) in operation clause Hℓ is determined by the type of ℓ; the
return type of r is D, as the body of the resumption will itself be handled by H. We write Hℓ

and Hval for projecting success and operation clauses.

Hval def
= {val x 7→M}, where {val x 7→M} ∈H

Hℓ def
= {ℓ p r 7→M}, where {ℓ p r 7→M} ∈H

We extend the operational semantics to λh. Specifically, we add two new reduction rules:
one for handling return values and another for handling operation invocations.

S-RET handle (return V) with H⇝ N[V/x], where Hval = {val x 7→N}
S-OP handle E [do ℓ V] with H⇝ N[V/p, (λy.handle E [return y] with H)/r],

where Hℓ = {ℓ p r 7→N}and y is fresh

The first rule invokes the success clause. The second rule handles an operation via the
corresponding operation clause.

To allow for the evaluation of subterms within handle expressions, we extend our earlier
grammar for evaluation contexts to one for handler contexts:

Handler contexts H ::= [ ] | let x←H in N | handle H with H

We then replace the S-LIFT rule with a corresponding rule for handler contexts.

H [M] ⇝ H [N], if M⇝N

However, it is critical that in the rule S-OP we restrict to pure evaluation contexts E rather
than handler contexts. This ensures that the do invocation is handled by the innermost
handler (recalling our convention that all handlers handle all operations). If arbitrary handler
contexts H were permitted in this rule, the semantics would become non-deterministic, as
any handler in scope could be selected.

Clearly, the ancestor-descendant relation for subterm occurrences extends to λh in the
obvious way.

We now characterise normal forms and state the standard type soundness property of λh.

Definition 1 (Computation normal forms). A computation term N is normal with respect to
Σ if N = return V for some V or N = E [do ℓ W] for some ℓ∈ dom(Σ), E , and W.

Theorem 1 (Type Soundness for λh). If ⊢M : C, then either there exists ⊢N : C such that
M⇝∗ N and N is normal with respect to Σ, or M diverges.

It is worth observing that our language does not prohibit ‘operation extrusion’: even if
we begin with a term in which all do invocations fall within the scope of a handler, this
property need not be preserved by reductions, since a do invocation may pass another do
to the outermost handler. Such behaviour may be readily ruled out using a type-and-effect
system, but this additional machinery is not necessary for our present purposes.
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4 Abstract machine semantics

Thus far we have introduced the base calculus λb and its extension with effect handlers
λh. For each calculus we have given a small-step operational semantics which uses a
substitution model for evaluation. Whilst this model is semantically pleasing, it falls short
of providing a realistic account of practical computation as substitution is an expensive
operation. We now develop a more practical model of computation based on an abstract
machine semantics.

4.1 Base machine

We choose a CEK-style abstract machine semantics (Felleisen and Friedman, 1987) for λb

based on that of Hillerström et al. (2020). The CEK machine operates on configurations
which are triples of the form ⟨M | γ | σ⟩. The first component contains the computation
currently being evaluated. The second component contains the environment γ which binds
free variables. The third component contains the continuation which instructs the machine
how to proceed once evaluation of the current computation is complete. The syntax of
abstract machine states is as follows.

Configurations C ∈Conf ::= ⟨M | γ | σ⟩
Environments γ ∈Env ::= /0 | γ[x 7→ v]
Machine values v, w∈MVal ::= x | k | c | ⟨⟩ | ⟨v, w⟩

| (γ, λxA. M) | (γ, rec f A→B x. M)

| inlB v | inrA w
Pure continuations σ ∈PureCont ::= [] | (γ, x, N) :: σ

Values consist of function closures, constants, pairs, and left or right tagged values. We
refer to continuations of the base machine as pure. A pure continuation is a stack of pure
continuation frames. A pure continuation frame (γ, x, N) closes a let-binding let x← [ ] in N
over environment γ . We write [] for an empty pure continuation and φ :: σ for the result of
pushing the frame φ onto σ . We use pattern matching to deconstruct pure continuations.

The abstract machine semantics is given in Figure 4. The transition relation (−→) makes
use of the value interpretation (J−K) from value terms to machine values. The machine is
initialised by placing a term in a configuration alongside the empty environment ( /0) and
the identity pure continuation ([]). The rules (M-APP), (M-REC), (M-CONST), (M-SPLIT),
(M-CASEL), and (M-CASER) eliminate values. The (M-LET) rule extends the current pure
continuation with let bindings. The (M-RETCONT) rule extends the environment in the top
frame of the pure continuation with a returned value. Given an input of a well-typed closed
computation term ⊢M : A, the machine will either diverge or return a value of type A. A
final state is given by a configuration of the form ⟨return V | γ | []⟩ in which case the final
return value is given by the denotation JVKγ of V under environment γ .

Correctness The base machine faithfully simulates the operational semantics for λb; most
transitions correspond directly to β -reductions, but M-LET performs an administrative
step to bring the computation M into evaluation position. We formally state and prove
the correspondence in Appendix A, relying on an inverse map L−M from configurations to
terms (Hillerström et al., 2020).
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Transition relation
M-APP ⟨V W | γ | σ⟩ −→ ⟨M | γ ′[x 7→ JWKγ] | σ⟩,

if JVKγ = (γ ′, λxA. M)

M-REC ⟨V W | γ | σ⟩ −→ ⟨M | γ ′[f 7→ (γ ′, rec f A→B x.M),

x 7→ JWKγ] | σ⟩,
if JVKγ = (γ ′, rec f A→B x.M)

M-CONST ⟨V W | γ | σ⟩ −→ ⟨return (⌜c⌝ (JWKγ)) | γ | σ⟩,
if JVKγ = c

M-SPLIT ⟨let ⟨x, y⟩= V in N | γ | σ⟩ −→ ⟨N | γ[x 7→ v, y 7→w] | σ⟩,
if JVKγ = ⟨v; w⟩

M-CASEL
⟨case V {inl x 7→M;

inr y 7→N} | γ | σ⟩ −→ ⟨M | γ[x 7→ v] | σ⟩,

if JVKγ = inl v

M-CASER
⟨case V {inl x 7→M;

inr y 7→N} | γ | σ⟩ −→ ⟨N | γ[y 7→ v] | σ⟩,

if JVKγ = inr v
M-LET ⟨let x←M in N | γ | σ⟩ −→ ⟨M | γ | (γ, x, N) :: σ⟩
M-RETCONT ⟨return V | γ | (γ ′, x, N) :: σ⟩ −→ ⟨N | γ ′[x 7→ JVKγ] | σ⟩

Value interpretation

JxKγ = γ(x)
J⟨⟩Kγ = ⟨⟩

JkKγ = k
JcKγ = c

JλxA.MKγ = (γ, λxA.M)

Jrec f A→B x.MKγ = (γ, rec f A→B x.M)

J⟨V, W⟩Kγ = ⟨JVKγ, JWKγ⟩ JinlB VKγ = inlB JVKγ

JinrA VKγ = inrA JVKγ

Fig. 4: Abstract Machine Semantics for λb

4.2 Handler machine

We now enrich the λb machine to a λh machine. We extend the syntax as follows.

Configurations C ∈Conf ::= ⟨M | γ | κ⟩
Resumptions ρ ∈Res ::= (σ , χ)

Continuations κ ∈Cont ::= [] | ρ :: κ

Handler closures χ ∈HClo ::= (γ, H)

Machine values v, w∈MVal ::= · · · | ρ

The notion of configurations changes slightly in that the continuation component is replaced
by a generalised continuation κ ∈Cont (Hillerström et al., 2020); a continuation is now a
list of resumptions. A resumption is a pair of a pure continuation (as in the base machine)
and a handler closure (χ). A handler closure consists of an environment and a handler
definition, where the former binds the free variables that occur in the latter. The machine is
initialised by placing a term in a configuration alongside the empty environment ( /0) and the
identity continuation (κ0). The latter is a singleton list containing the identity resumption,
which consists of the identity pure continuation paired with the identity handler closure:

κ0
def
= [([], ( /0, {val x 7→ x}))]
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Transition relation
M-LET ⟨let x←M in N | γ | (σ , χ) :: κ⟩ −→ ⟨M | γ | ((γ, x, N) :: σ , χ) :: κ⟩
M-RETCONT ⟨return V | γ | ((γ ′, x, N) :: σ , χ) :: κ⟩ −→ ⟨N | γ ′[x 7→ JVKγ] | (σ , χ) :: κ⟩
M-HANDLE ⟨handle M with H | γ | κ⟩ −→ ⟨M | γ | ([], (γ, H)) :: κ⟩
M-RETHANDLER ⟨return V | γ | ([], (γ ′, H)) :: κ⟩ −→ ⟨M | γ ′[x 7→ JVKγ] | κ⟩,

if Hval = {val x 7→M}
M-HANDLE-OP ⟨do ℓ V | γ | (σ , (γ ′, H)) :: κ⟩ −→ ⟨M | γ ′[p 7→ JVKγ,

r 7→ (σ , (γ ′, H))] | κ⟩,
if ℓ : A→ B∈ Σ

and Hℓ = {ℓ p r 7→M}
M-RESUME ⟨V W | γ | κ⟩ −→ ⟨return W | γ | (σ , χ) :: κ⟩,

if JVKγ = (σ , χ)

Fig. 5: Abstract Machine Semantics for λh

Machine values are augmented to include resumptions as an operation invocation causes
the topmost frame of the machine continuation to be reified (and bound to the resumption
parameter in the operation clause).

The handler machine adds transition rules for handlers, and modifies (M-LET) and
(M-RETCONT) from the base machine to account for the richer continuation structure.
Figure 5 depicts the new and modified rules. The (M-HANDLE) rule pushes a han-
dler closure along with an empty pure continuation onto the continuation stack. The
(M-RETHANDLER) rule transfers control to the success clause of the current handler
once the pure continuation is empty. The (M-HANDLE-OP) rule transfers control to the
matching operation clause on the topmost handler, and during the process it reifies the
handler closure. Finally, the (M-RESUME) rule applies a reified handler closure, by pushing
it onto the continuation stack. The handler machine has two possible final states: either it
yields a value or it gets stuck on an unhandled operation.

Correctness The handler machine faithfully simulates the operational semantics of λh.
Extending the result for the base machine, we formally state and prove the correspondence
in Appendix B.

4.3 Realisability and asymptotic complexity

As witnessed by the work of Hillerström and Lindley (2016) the machine structures are
readily realisable using standard persistent functional data structures. Pure continuations on
the base machine and generalised continuations on the handler machine can be implemented
using linked lists with a time complexity of O(1) for the extension operation (_ :: _). The
topmost pure continuation on the handler machine may also be extended in time O(1),
as extending it only requires reaching under the topmost handler closure. Environments,
γ , can be realised using a map, with a time complexity of O(log |γ|) for extension and
lookup (Okasaki, 1999). We can use the same technique to realise label lookup, Hℓ, with
time complexity O(log |Σ|). Though, in Section 5.4 we shall work only with a single effect
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operation, so |Σ|= 1, meaning that in our analysis we can practically treat label lookup as
being a constant time operation.

The worst-case time complexity of a single machine transition is exhibited by rules which
involve operations on the environment, since any other operation is constant time, hence the
worst-time complexity of a transition is O(log |γ|). The value interpretation function J−Kγ

is defined structurally on values. Its worst-time complexity is exhibited by a nesting of pairs
of variables J⟨x1, ⟨x2, · · · , ⟨xn−1, xn⟩ · · ·⟩⟩Kγ which has complexity O(n log |γ|).

Continuation copying On the handler machine the topmost continuation frame can be
copied in constant time due to the persistent runtime and the layout of machine continuations.
An alternative design would be to make the runtime non-persistent in which case copying a
continuation frame ((σ , _) :: _) would be a O(|σ |) time operation.

Primitive operations on naturals Our model assumes that arithmetic operations on
arbitrary natural numbers take O(1) time. This is common practice in the study of algorithms
when the main interest lies elsewhere (Cormen et al., 2009, Section 2.2). If desired, one could
adopt a more refined cost model that accounted for the bit-level complexity of arithmetic
operations; however, doing so would have the same impact on both of the situations we are
wishing to compare, and thus would add nothing but noise to the overall analysis.

5 Predicates, decision trees and generic count

We now come to the crux of the paper. In this section and the next, we prove that λh supports
implementations of certain operations with an asymptotic runtime bound that cannot be
achieved in λb (Section 8). While the positive half of this claim essentially consolidates a
known piece of folklore, the negative half appears to be new. To establish our result, it will
suffice to exhibit a single ‘efficient’ program in λh, then show that no equivalent program in
λb can achieve the same asymptotic efficiency. We take generic search as our example.

Generic search is a modular search procedure that takes as input a predicate P on some
multi-dimensional search space, and finds all points of the space satisfying P. Generic
search is agnostic to the specific instantiation of P, and as a result is applicable across a wide
spectrum of domains. Classic examples such as Sudoku solving (Bird, 2006), the n-queens
problem (Bell and Stevens, 2009) and graph colouring can be cast as instances of generic
search, and similar ideas have been explored in connection with Nash equilibria and exact
real integration (Simpson, 1998; Daniels, 2016).

For simplicity, we will restrict attention to search spaces of the form Bn, the set of bit
vectors of length n. To exhibit our phenomenon in the simplest possible setting, we shall
actually focus on the generic count problem: given a predicate P on some Bn, return the
number of points of Bn satisfying P. However, we shall explain why our results are also
applicable to generic search proper.

We shall view Bn as the set of functions Nn→B, where Nn
def
= {0, . . . , n− 1}. In both

λb and λh we may represent such functions by terms of type Nat→Bool. We will often
informally write Natn in place of Nat to indicate that only the values 0, . . . , n− 1 are
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relevant, but this convention has no formal status since our setup does not support dependent
types.

To summarise, in both λb and λh we will be working with the types

Point def
= Nat→Bool Pointn

def
= Natn→Bool

Predicate def
= Point→Bool Predicaten

def
= Pointn→Bool

and will be looking for programs

countn : Predicaten→Nat

such that for suitable terms P representing semantic predicates Π : Bn→B, countn P finds
the number of points of Bn satisfying Π.

Before formalising these ideas more closely, let us look at some examples, which will
also illustrate the machinery of decision trees that we will be using.

5.1 Examples of points, predicates and trees

Consider first the following terms of type Point:

q0
def
= λ_.true q1

def
= λ i.i = 0 q2

def
= λ i. if i = 0 then true else if i = 1 then false else⊥

(Here ⊥ is the diverging term (rec f i.f i) ⟨⟩.) Then q0 represents ⟨true, . . . , true⟩ ∈Bn

for any n; q1 represents ⟨true, false, . . . , false⟩ ∈Bn for any n≥ 1; and q2 represents
⟨true, false⟩ ∈B2.

Next some predicates. First, the following terms all represent the constant true predicate
B2→B:

T0
def
= λq.true T1

def
= λq.(q 1; q 0; true) T2

def
= λq.(q 0; q 0; true)

These illustrate that in the course of evaluating a predicate term P at a point q, for each i < n
the value of q at i may be inspected zero, one or many times.

Likewise, the following all represent the ‘identity’ predicate B1→B (here && is shortcut
‘and’):

I0
def
= λq.q 0 I1

def
= λq. if q 0 then true else false I2

def
= λq.(q 0) && (q 0)

Slightly more interestingly, for each n we have the following program which determines
whether a point contains an odd number of true components:

Oddn
def
= λq. fold⊗ false (map q [0, . . . , n− 1])

Here fold and map are the standard combinators on lists, and ⊗ is exclusive-or. Applying
Odd2 to q0 yields false; applying it to q1 or q2 yields true.

We can think of a predicate term P as participating in a ‘dialogue’ with a given point
Q : Pointn. The predicate may query Q at some coordinate k; Q may respond with true or
false and this returned value may influence the future course of the dialogue. After zero or
more such query/response pairs, the predicate may return a final answer (true or false).

The set of possible dialogues with a given term P may be organised in an obvious way
into an unrooted binary decision tree, in which each internal node is labelled with a query
?k (with k < n), and with left and right branches corresponding to the responses true, false
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!true

(a) T0

?0

?0

!true !false

!false

(b) I2

?0

?1

!false !true

?1

!true !false

(c) Odd2

Fig. 6: Examples of Decision Trees

respectively. Any point will thus determine a path through the tree, and each leaf is labelled
with an answer !true or !false according to whether the corresponding point or points satisfy
the predicate.

Decision trees for a sample of the above predicate terms are depicted in Figure 6; the
relevant formal definitions are given in the next subsection. In the case of I2, one of the
!false leaves will be ‘unreachable’ if we are working in λb (but reachable in a language
supporting mutable state).

We think of the edges in the tree as corresponding to portions of computation undertaken
by P between queries, or before delivering the final answer. The tree is unrooted (i.e. starts
with an edge rather than a node) because in the evaluation of P Q there is potentially some
‘thinking’ done by P even before the first query or answer is reached. For the purpose of our
runtime analysis, we will also consider timed variants of these decision trees, in which each
edge is labelled with the number of computation steps involved.

It is possible that for a given P the construction of a decision tree may hit trouble, because
at some stage P either goes undefined or gets stuck at an unhandled operation. It is also
possible that the decision tree is infinite because P can keep asking queries forever. However,
we shall be restricting our attention to terms representing total predicates: those with finite
decision trees in which every path leads to a leaf.

In order to present our complexity results in a simple and clear form, we will give
special prominence to certain well-behaved decision trees. For n∈N, we shall say a tree
is n-standard if it is total (i.e. every maximal path leads to a leaf labelled with an answer)
and along any path to a leaf, each coordinate k < n is queried once and only once. Thus, an
n-standard decision tree is a complete binary tree of depth n + 1, with 2n − 1 internal nodes
and 2n leaves. However, there is no constraint on the order of the queries, which indeed may
vary from one path to another. One pleasing property of this notion is that for a predicate
term with an n-standard decision tree, the number of points in Bn satisfying the predicate is
precisely the number of !true leaves in the tree.

Of the examples we have given, the tree for T0 is 0-standard; those for I0 and I1 are
1-standard; that for Oddn is n-standard; and the rest are not n-standard for any n.
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5.2 Formal definitions

We now formalise the above notions. We will present our definitions in the setting of λh,
but everything can clearly be relativised to λb with no change to the meaning in the case
of λb terms. For the purpose of this subsection we fix n∈N, set Nn

def
= {0, . . . , n− 1}, and

use k to range over Nn. We write B for the set of booleans, which we shall identify with the
(encoded) boolean values of λh, and use b to range over B.

As suggested by the foregoing discussion, we will need to work with both syntax and
semantics. For points, the relevant definitions are as follows.

Definition 2 (n-points). A closed value Q : Point is said to be a syntactic n-point if:

∀k ∈Nn. ∃b∈B. Q k⇝∗ return b

A semantic n-point π is simply a mathematical function π : Nn→B. (We shall also write
π ∈Bn.) Any syntactic n-point Q is said to denote the semantic n-point JQK given by:

∀k ∈Nn, b∈B. JQK(k) = b ⇔ Q k⇝∗ return b

Any two syntactic n-points Q and Q′ are said to be distinct if JQK ̸= JQ′K.

By default, the unqualified term n-point will from now on refer to syntactic n-points.
Likewise, we wish to work with predicates both syntactically and semantically. By a

semantic n-predicate we shall mean simply a mathematical function Π : Bn→B. One
slick way to define syntactic n-predicates would be as closed terms P : Predicate such that
for every n-point Q, P Q evaluates to either return true or return false. For our purposes,
however, we shall favour an approach to n-predicates via decision trees, which will yield
more information on their behaviour.

We will model decision trees as certain partial functions from addresses to labels. An
address will specify the position of a node in the tree via the path that leads to it, while a
label will represent the information present at a node. Formally:

Definition 3 (untimed decision tree). (i) The address set Addr is simply the set B∗ of finite
lists of booleans. If bs, bs′ ∈Addr, we write bs⊑ bs′ (resp. bs⊏ bs′) to mean that bs is a
prefix (resp. proper prefix) of bs′.

(ii) The label set Lab consists of queries parameterised by a natural number and answers
parameterised by a boolean:

Lab def
= {?k | k ∈N} ∪ {!b | b∈B}

(iii) An (untimed) decision tree is a partial function τ : Addr⇀ Lab such that:

• The domain of τ (written dom(τ)) is prefix closed.
• Answer nodes are always leaves: if τ(bs) = !b then τ(bs′) is undefined whenever

bs⊏ bs′.

As our goal is to reason about the time complexity of generic count programs and their
predicates, it is also helpful to decorate decision trees with timing data that records the
number of machine steps taken for each piece of computation performed by a predicate:
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Definition 4 (timed decision tree). A timed decision tree is a partial function τ : Addr⇀
Lab×N such that its first projection bs 7→ τ(bs).1 is a decision tree. We write labs(τ) for
the first projection (bs 7→ τ(bs).1) and steps(τ) for the second projection (bs 7→ τ(bs).2)
of a timed decision tree.

Here we think of steps(τ)(bs) as the computation time associated with the edge whose
target is the node addressed by bs.

We now come to the method for associating a specific tree with a given term P. One may
think of this as a kind of denotational semantics, but here we shall extract a tree from a
term by purely operational means using our abstract machine model. The key idea is to
try applying P to a distinguished free variable q : Point, which we think of as an ‘abstract
point’. Whenever P wants to interrogate its argument at some index i, the computation will
get stuck at some term q i: this both flags up the presence of a query node in the decision
tree, and allows us to explore the subsequent behaviour under both possible responses to
this query.

Our definition captures this idea using abstract machine configurations. We write Confq

for the set of λh configurations possibly involving q (but no other free variables). We write
a≃ b for Kleene equality: either both a and b are undefined or both are defined and a = b.

It is convenient to define the timed tree and then extract the untimed one from it:

Definition 5. (i) Define T : Confq→Addr⇀ (Lab×N) to be the minimal family of partial
functions satisfying the following equations:

T (⟨return W | γ | []⟩) [] = (!b, 0), if JWKγ = b

T (⟨z V | γ | κ⟩) [] = (?JVKγ, 0), if γ(z) = q

T (⟨z V | γ | κ⟩) (b :: bs) ≃ T (⟨return b | γ | κ⟩) bs, if γ(z) = q

T (⟨M | γ | κ⟩) bs ≃ inc (T (⟨M′ | γ ′ | κ ′⟩) bs), if ⟨M | γ | κ⟩ −→ ⟨M′ | γ ′ | κ ′⟩

Here inc(ℓ, s) = (ℓ, s + 1), and in all of the above equations γ(q) = γ ′(q) = q. Clearly
T (C ) is a timed decision tree for any C ∈Confq.

(ii) The timed decision tree of a computation term is obtained by placing it in the initial
configuration: T (M)

def
=T (⟨M, /0[q 7→ q], κ0⟩).

(iii) The timed decision tree of a closed value P : Predicate is T (P q). Since q plays the
role of a dummy argument, we will usually omit it and write T (P) for T (P q).

(iv) The untimed decision tree U (P) is obtained from T (P) via first projection: U (P) =
labs(T (P)).

If the execution of a configuration C runs forever or gets stuck at an unhandled operation,
then T (C )(bs) will be undefined for all bs. Although this is admitted by our definition of
decision tree, we wish to exclude such behaviours for the terms we accept as valid predicates.
Specifically, we frame the following definition:

Definition 6. A decision tree τ is an n-predicate tree if it satisfies the following:

• For every query ?k appearing in τ , we have k ∈Nn.
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• Every query node has both children present:

∀bs∈Addr, k ∈Nn, b∈B. τ(bs) = ?k⇒ bs ++ [b]∈ dom(τ)

• All paths in τ are finite (so every maximal path terminates in an answer node).

A closed term P : Predicate is a (syntactic) n-predicate if U (P) is an n-predicate tree.

If τ is an n-predicate tree, clearly any semantic n-point π gives rise to a path b0b1 . . .

through τ , given inductively by:

∀j. if τ(b0 . . . bj−1) = ?kj then bj = π(kj)

This path will terminate at some answer node b0b1 . . . br−1 of τ , and we may write τ • π ∈B
for the answer at this leaf.

Proposition 1. If P is an n-predicate and Q is an n-point, then P Q⇝∗ return b where
b =U (P) • JQK.

Proof By interleaving the computation for the relevant path through U (P) with computa-
tions for queries to Q, and appealing to the correspondence between the small-step reduction
and abstract machine semantics. We omit the routine details. ■

It is thus natural to define the denotation of an n-predicate P to be the semantic n-predicate
JPK given by JPK(π) =U (P) • π .

As mentioned earlier, we shall also be interested in a more constrained class of trees and
predicates:

Definition 7 (n-standard trees and predicates). An n-predicate tree τ is said to be n-standard
if the following hold:

• The domain of τ is precisely Addrn, the set of bit vectors of length ≤ n.
• There are no repeated queries along any path in τ:

∀bs, bs′ ∈ dom(τ), k ∈Nn. bs⊑ bs′ ∧ τ(bs) = τ(bs′) = ?k⇒ bs = bs′

A timed decision tree τ is n-standard if its underlying untimed decision tree labs(τ) is too.
An n-predicate P is n-standard if U (P) is n-standard.

Clearly, in an n-standard tree, each of the n queries ?0, . . . , ?(n− 1) appears exactly once
on the path to any leaf, and there are 2n leaves, all of them answer nodes.

It is also clear how for any n-standard tree τ we may construct a predicate P that denotes
it, simply by mirroring the structure of τ with nested if expressions:

Definition 8 (canonical n-standard predicates). Given an n-standard tree τ , we may asso-
ciate to each address bs∈ dom(τ) a λb term Tq(τ, bs) (with free variable q : Point) by
reverse induction on the length of bs:

Tq(τ, bs) = return b if τ(bs) =!b

Tq(τ, bs) = if q(k) then Tq(τ, bs ++ [true]) else Tq(τ, bs ++ [false]) if τ(bs) =?k
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We then define

P(τ) = λq. Tq(τ, [])

(so that clearly U (P(τ)) = τ), and call P(τ) the canonical n-standard predicate for τ .
In practice we will omit the subscript q from uses of T.

Note that the use of lists here is entirely at the meta-level, and none of the terms T(τ, bs)
themselves involve list data. Because of their simple, standardised form, canonical n-
standard predicates will play a useful role in our lower bound analysis in Section 8

5.3 Specification of counting programs

We can now specify what it means for a program K : Predicate→Nat to implement counting.

Definition 9. (i) The count of a semantic n-predicate Π, written ♯Π, is simply the number
of semantic n-points π ∈Bn for which Π(π) = true.

(ii) If P is any n-predicate, we say that K correctly counts P if K P⇝∗ return m, where
m = ♯JPK.

This definition gives us the flexibility to talk about counting programs that operate on
various classes of predicates, allowing us to state our results in their strongest natural form.
On the positive side, we shall shortly see that there is a single ‘efficient’ program in λh

that correctly counts all n-standard λh predicates for every n; in Section 6.1 we improve
this to one that correctly counts all n-predicates of λh. On the negative side, we shall show
that an n-indexed family of counting programs written in λb, even if only required to work
correctly on canonical n-standard λb predicates, can never compete with our λh program for
asymptotic efficiency even in the most favourable cases.

5.4 Efficient generic count with effects

We now present the simplest version of our effectful implementation of counting: one that
works on n-standard predicates.

Our program uses a variation of the handler for nondeterministic computation that we
gave in Section 2. The main idea is to implement points as ‘nondeterministic computations’
using the Branch operation such that the handler may respond to every query twice, by
invoking the provided resumption with true and subsequently false. The key insight is
that the resumption restarts computation at the invocation site of Branch, meaning that
prior computation performed by the predicate need not be repeated. In other words, the
resumption ensures that common portions of computations prior to any query are shared
between both branches.

We assert that Branch : Unit→Bool∈ Σ is a distinguished operation that may not be
handled in the definition of any input predicate (it has to be forwarded according to the
default convention). The algorithm is then as follows.

effcount : ((Nat→Bool)→Bool)→Nat
effcount pred def

= handle pred (λ_.do Branch ⟨⟩) with
val x 7→ if x then return 1 else return 0
Branch ⟨⟩ r 7→ let xtrue← r true in

let xfalse← r false in xtrue + xfalse
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The handler applies predicate pred to a single ‘generic point’ defined using Branch. The
boolean return value is interpreted as a single solution, whilst Branch is interpreted by
alternately supplying true and false to the resumption and summing the results. The sharing
enabled by the use of the resumption is exactly the ‘magic’ we need to make it possible to
implement generic count more efficiently in λh than in λb. A curious feature of effcount is
that it works for all n-standard predicates without having to know the value of n.

We may now articulate the crucial correctness and efficiency properties of effcount.

Theorem 2. The following hold for any n∈N and any n-standard predicate P of λh:

1. effcount correctly counts P.
2. The number of machine steps required to evaluate effcount P is(

∑
bs∈Addrn

steps(T (P))(bs)

)
+ O(2n)

Proof [Outline.] Suppose bs∈Addrn, with length j. From the construction of T (P), one
may easily read off a configuration Cbs whose execution is expected to compute the count
for the subtree below node bs, and we can explicitly describe the form Cbs will have. We
write Hyp(bs) for the claim that Cbs correctly counts this subtree, and does so within the
following number of steps:(

∑
bs′∈Addrn, bs′⊐bs

steps(T (P))(bs′)

)
+ 9 ∗ (2n−j − 1) + 2 ∗ 2n−j

The 9 ∗ (2n−j − 1) expression is the number of machine steps contributed by the Branch-case
inside the handler, whilst the 2 ∗ 2n−j expression is the number of machine steps contributed
by the val-case. We prove Hyp(bs) by a laborious but entirely routine downwards induction
on the length of bs. The proof combines counting of explicit machine steps with ‘oracular’
appeals to the assumed behaviour of P as modelled by T (P). Once Hyp([]) is established,
both halves of the theorem follow easily. Full details are given in Appendix C of Hillerström
et al. (2020). ■

The above formula can clearly be simplified for certain reasonable classes of predicates.
For instance, suppose we fix some constant c∈N, and let Pn,c be the class of all n-standard
predicates P for which all the edge times steps(T (P))(bs) are bounded by c. (Many
reasonable predicates will belong to Pn,c for some modest value of c: for instance, the
membership test for any regular language L ⊆ {0, 1}∗, or even for many languages defined
by deterministic pushdown automata if cons-lists be added to our language.) Since the
number of sequences bs in question is less than 2n+1, we may read off from the above
formula that for predicates in Pn,c, the runtime of effcount is O(c2n).

Alternatively, should we wish to use the finer-grained cost model that assigns an O(log |γ|)
runtime to each abstract machine step (see Section 4.3), we may note that any environment
γ arising in the computation contains at most n entries introduced by the let-bindings in
effcount, and (if P∈Pn,c) at most O(cn) entries introduced by P. Thus, the time for each
step in the computation remains O(log c + log n), and the total runtime for effcount is
O(c2n(log c + log n)).
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One might also ask about the execution time for an implementation of λh that performs
genuine copying of continuations, as in systems such as MLton (2020). As MLton copies
the entire continuation (stack), whose size is O(n), at each of the 2n branches, continuation
copying alone takes time O(n2n) and the effectful implementation offers no performance
benefit. More refined implementations (Farvardin and Reppy, 2020; Flatt and Dybvig, 2020)
that are able to take advantage of delimited control operators or sharing in copies of the
stack can bring the complexity of continuation copying back down to O(2n).

Finally, one might consider another dimension of cost, namely the space used by effcount.
Consider a class Qn,c,d of n-standard predicates P for which the edge times in T (P)
never exceed c and the sizes of pure continuations never exceed d. If we consider any
P∈Qn,c,d then the total number of environment entries is bounded by cn, taking up space
O(cn(log cn)). We must also account for the pure continuations. There are n of these, each
taking at most d space. Thus the total space is O(n(d + c(log c + log n))).

6 Extensions and variations

Our efficient implementation method is robust under several variations. We outline here how
the idea generalises beyond n-standard predicates, and adapts from generic count to generic
search. We also indicate how one may obtain the speedup in question in the presence of a
type-and-effect system.

6.1 Beyond n-standard predicates

The n-standard restriction on predicates serves to make the efficiency phenomenon stand
out as clearly as possible. However, we can relax the restriction by tweaking effcount to
handle repeated queries and missing queries. The trade-off is that the analysis of effcount
becomes more involved. The key to relaxing the n-standard restriction is the use of state to
keep track of which queries have been computed. We can give stateful implementations of
effcount without changing its type signature by using parameter-passing (Kammar et al.,
2013; Pretnar, 2015) to internalise state within a handler. Parameter-passing abstracts every
handler clause such that the current state is supplied before the evaluation of a clause
continues and the state is threaded through resumptions: a resumption becomes a two-
argument curried function r : B→ S→D, where the first argument of type B is the return
type of the operation and the second argument is the updated state of type S.

Repeated queries We can generalise effcount to handle repeated queries by memoising
previous answers. First, we generalise the type of Branch to carry an index of a query.

Branch : Nat→Bool

We assume a family of natural number to boolean maps, Mapn with the following interface.

emptyn : Mapn
addn : (Natn ×Bool)→Mapn→Mapn

lookupn : Natn→Mapn→ (Unit + Bool)
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Invoking lookup i map returns inl ⟨⟩ if i is not present in map, and inr ans if i is associated
by map with the value ans : Bool. Allowing ourselves a few extra constant-time arithmetic
operations, we can realise suitable maps in λb such that the time complexity of addn and
lookupn is O(log n) (Okasaki, 1999). We can then use parameter-passing to support repeated
queries as follows.

effcount′n : ((Natn→Bool)→Bool)→Nat
effcount′n pred def

= let h← handle pred (λ i.do Branch i) with
val x 7→ λ s.if x then 1 else 0
Branch i r 7→ λ s.case lookupn i s {

inl ⟨⟩ 7→ let xtrue← r true (addn ⟨i, true⟩ s) in
let xfalse← r false (addn ⟨i, false⟩ s) in
(xtrue + xfalse)

inr x 7→ r x s }
in h emptyn

The state parameter s memoises query results, thus avoiding double-counting and enabling
effcount′n to work correctly for predicates performing the same query multiple times.

Missing queries Similarly, we can use parameter-passing to support missing queries.

effcount′′n : ((Natn→Bool)→Bool)→Nat
effcount′′n pred def

= let h← handle pred (λ i.do Branch ⟨⟩) with
val x 7→ λd.let result← if x then 1 else 0

in result× 2n−d

Branch ⟨⟩ r 7→ λd.let xtrue← r true (d + 1) in
let xfalse← r false (d + 1) in
(xtrue + xfalse)

in h 0

The parameter d tracks the depth and the returned result is scaled by 2n−d accounting for
the unexplored part of the current subtree. This enables effcount′′n to operate correctly on
predicates that inspect n points at most once. We leave it as an exercise for the reader to
combine effcount′n and effcount′′n to handle both repeated queries and missing queries.

6.2 From generic count to generic search

We can generalise the problem of generic counting to generic searching. The key difference
is that a generic search procedure must materialise a list of solutions, thus its type is

searchn : ((Natn→Bool)→Bool)→ ListNatn→Bool

where ListA is the type of cons-lists whose elements have type A. We modify effcount to
return a list of solutions rather than the number of solutions by lifting each result into a
singleton list and using list concatenation instead of addition to combine partial results xstrue

and xsfalse as follows.

effsearchn : ((Natn→Bool)→Bool)→ ListNatn→Bool

effsearchn pred def
= let f ← handle pred (λ i.do Branch i) with

val x 7→ λq.if x then singleton q else nil
Branch i r 7→ λq.let xstrue← r true (λ j.if i = j then true else q j) in

let xsfalse← r false (λ j.if i = j then false else q j) in
append ⟨xstrue, xsfalse⟩

in toConsList ( f (λ j.⊥))
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The Branch operation is now parameterised by an index i. The handler is now parameterised
by the current path as a point q, which is output at a leaf if it is in the predicate. A little care
is required to ensure that effsearchn has runtime O(2n); naïve use of cons-list concatenation
would result in O(n2n) runtime, as cons-list concatenation is linear in its first operand.
In place of cons-lists we use Hughes lists (Hughes, 1986), which admit constant time
concatenation: HListA

def
= ListA→ ListA. The empty Hughes list nil : HListA is defined as the

identity function: nil def
= λxs.xs.

singletonA : A→HListA
singletonA x def

= λxs.x :: xs

appendA : HListA ×HListA→HListA
appendA f g def

= λxs.g (f xs)

toConsListA : HList→ ListA
toConsListA f def

= f []

We use the function toConsList to convert the final Hughes list to a standard cons-list. This
conversion has linear time complexity (it just conses all of the elements of the list together).

6.3 Type-and-effect system

Many practical implementations of effect handlers come equipped with rich type systems
that track which effectful operations any function may perform (Bauer and Pretnar, 2014;
Hillerström and Lindley, 2016; Leijen, 2017; Biernacki et al., 2019; Brachthäuser et al.,
2020). One may wonder whether our result transfers to such a system as we make crucial
use of the ability to inject an effectful operation into a computation, which a first glance
might seem to require a change of (effect) types.

However, as we shall briefly outline, with sufficient polymorphism we need not change
the effect types. Our generic count program does not perform any externally visible effects.
Therefore, if we equip our simple type system with some form of rank-2 effect polymor-
phism, then we do not morally require a change of types even in the presence of the richer
types provided by effect tracking.

Suppose we track the effects on function types, e.g. A→ B!ε denotes a function that
accepts a value of type A as input and produces some value of type B as output using
effects ε . Here ε is intended to be an effect variable which may be instantiated to name
concrete effectful operations that the function may perform such as Branch : Unit→Bool.
We shall not concern ourselves with a particular effect type formalism here, but rather
just note that there are many approaches to realising such an effect system, e.g. using row
types (Hillerström and Lindley, 2016; Leijen, 2017), subtyping (Bauer and Pretnar, 2014),
intersection types (Brachthäuser et al., 2020), etc.

We can give a fully effect-parametric signature to generic count using rank-2 effect
polymorphism.

Count : (∀ε.(Nat→Bool!ε)→Bool!ε)→Nat! /0

Here /0 denotes that an application of Count does not perform any externally visible effects.
The parameter type of Count is a rank-2 effect type. It effectively hides the implementation
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detail of the provided point from the predicate. Thus, the implementation of Count is allowed
to supply a point that performs any effectful operation granted that the implementation
guarantees to handle any such operation. This idea of using rank-2 polymorphism is an old
idea which dates back at least to McCracken (1984); it has been used in practice in Haskell
as the primary means for state encapsulation since Launchbury and Jones (1994).

7 Generic count in weaker languages

We have shown that there is an implementation of generic count in λh with a runtime
bound of O(2n) for certain well-behaved predicates. Our eventual goal is to prove that
such a runtime bound is unattainable in λb (Section 8), or indeed in the stronger language
λa (Section 10). In this section, we provide some context for these results by surveying a
range of possible approaches to generic counting in languages weaker than λh, emphasising
how the attainable efficiency varies according to the expressivity of the language. Since
the purpose here is simply to situate our main results within a broader landscape which
may itself call for further investigation, our discussion in this section will be informal and
intuitive rather than mathematically rigorous.

7.1 Naïve count

The naïve approach, of course, is simply to apply the given predicate P to all 2n possible
n-points in turn, keeping a count of those on which P yields true. Of course, this approach
could be readily implemented in λb; but it is also clear how it could be effected in an even
weaker language, in which the recursion construct of λb is replaced by a weaker iteration
construct. For instance, the following operator (definable in λb) allows one to achieve the
effect of while-loops manipulating data of type A:

whileA : (A→Bool)→ A→ (A→ A)→ A
whileA test x f def

= if test x then whileA test (f x) f else x

Let us write λi for the sublanguage of λb allowing whileA for each type A, but disallowing
all uses of rec elsewhere. Then it is a straightforward coding exercise to write a λi program

naivecountn : ((Natn→Bool)→Bool)→Nat

that implements generic counting using the naïve strategy.
The evaluation of an n-standard predicate on an individual n-point must clearly take time

Ω(n). It is therefore clear that in whatever way the naïve count strategy is implemented,
the runtime on any n-standard predicate P must be Ω(n2n). If P is not n-standard, the Ω(n)
bound on each point application need not apply, but we may still say that a naïve count for
any predicate P (at level n) must take time Ω(2n).

One might at first suppose that these properties are inevitable for any implementation of
generic count within λb, or indeed any purely functional language: surely, the only way to
learn something about the behaviour of P on every possible n-point is to apply P to each
of these points in turn? It turns out, however, that the Ω(2n) lower bound can sometimes
be circumvented by implementations that cleverly exploit nesting of calls to P. In the next
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section we illustrate the germ of this idea, and in Section 7.3 we show how it gives rise to a
practically superior counting program within λb.

7.2 The nesting trick

The germ of the idea may be illustrated even within λi. Suppose that we first construct some
program

bestshotn : ((Natn→Bool)→Bool)→ (Natn→Bool)

which, given a predicate P, returns some n-point Q such that P Q evaluates to true, if
such a point exists, and any point at all if no such point exists. (In other words, bestshotn
embodies Hilbert’s choice operator ε on predicates.) It is once again routine to construct
such a program by naïve means; and we may moreover assume that for any P, the evaluation
of bestshotn P takes only constant time, all the real work being deferred until the argument
of type Natn is supplied.

Now consider the following program:

lazycountn
def
= λpred. if pred (bestshotn pred)

then naivecountn pred
else return 0

Here the term pred (bestshotn pred) serves to test whether there exists an n-point satisfying
pred: if there is not, our count program may return 0 straightaway. It is thus clear that
lazycountn is a correct implementation of generic count, and also that if pred is the predicate
λq.false then lazycountn pred returns 0 within O(1) time, thus violating the Ω(2n) lower
bound suggested above.

This might seem like a footling point, as lazycountn offers this efficiency gain only on
(certain implementations of) the constantly false predicate. However, it turns out that by a
recursive application of this nesting trick, we may arrive at a generic count program in λb

that spectacularly defies the Ω(2n) lower bound for an interesting class of (non-n-standard)
predicates, and indeed proves quite viable for counting solutions to ‘n-queens’ and similar
problems. In contrast to the naïve strategy, however, this approach relies crucially on the
use of recursion, and cannot be implemented in a language such as λi with mere iteration.

We shall refer to this λb program as Bergercount, as it is modelled largely on Berger’s
PCF implementation of the so-called fan functional (Berger, 1990; Longley and Normann,
2015). We give an implementation of Bergercount in the next section.

7.3 Berger count

Berger’s original program (Berger, 1990) introduced a remarkable search operator for
predicates on infinite streams of booleans, and has played an important role in higher-order
computability theory (Longley and Normann, 2015). What we wish to highlight here is that
if one applies the algorithm to predicates on finite boolean vectors, the resulting program,
though no longer interesting from a computability perspective, still holds some interest from
a complexity standpoint: indeed, it yields what seems to be the best known implementation



1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Journal of Functional Programming 29

bestshotn : Predicaten→ Pointn
bestshotn pred def

= bestshot′n pred []

bestshot′n : Predicaten→ ListBool→ Pointn
bestshot′n pred start def

= let f ←memoise (λ ⟨⟩.bestshot′′n pred start) in
return (λ i.if i < |start| then start.i else (f ⟨⟩).i)

bestshot′′n : Predicaten→ ListBool→ ListBool

bestshot′′n pred start def
= if |start|= n then return start

else let f ← bestshot′n pred (append start [true]) in
if pred f then return [f 0, . . . , f (n− 1)]
else bestshot′′n pred (append start [false])

Fig. 7: An implementation of bestshot in λb with memoisation

of generic count within a PCF-style ‘functional’ language (provided one accepts the use of
a primitive for call-by-need evaluation).

We give the gist of an adaptation of Berger’s search algorithm on finite spaces. The
key ingredient of Berger’s search algorithm is the bestshotn function, which given any
n-standard predicate P returns a point satisfying P if one exists, or dummy point λ i.false
if not. Figure 7 depicts the implementation of this function. It is implemented by via two
mutually recursive auxiliary functions whose workings are admittedly hard to elucidate in a
few words. The function bestshot′n is a generalisation of bestshotn that makes a best shot at
finding a point π satisfying given predicate and matching some specified list start in some
initial segment of its components [π(0), . . . , π(i− 1)]. It works ‘lazily’, drawing its values
from start wherever possible, and performing an actual search only when required. This
actual search is undertaken by bestshot′′n , which proceeds by first searching for a solution
that extends the specified list with true; but if no such solution is forthcoming, it settles
for false as the next component of the point being constructed. The whole procedure relies
on a subtle combination of laziness, recursion and implicit nesting of calls to the provided
predicate which means that the search is self-pruning in regions of the binary tree where the
predicate only demands some initial segment q 0,. . . ,q (i− 1) of its argument q.

The above program makes use of an operation

memoise : (Unit→ List Bool)→ (Unit→ List Bool)

which transforms a given thunk into an equivalent ‘memoised’ version, i.e. one that caches
its value after its first invocation and immediately returns this value on all subsequent
invocations. Such an operation may readily be implemented with the help of local state,
or alternatively may simply be added as a primitive in its own right. The latter has the
advantage that it preserves the purely ‘functional’ character of the language, in the sense
that every program is observationally equivalent to a λb program, namely the one obtained
by replacing memoise by the identity.

Figure 8 depicts an implementation that exploits the above idea to yield a generic
count program (this development appears to be new). Again, Bergercountn is implemented
by means of two mutually recursive auxiliary functions. The function count′n counts the
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Bergercountn : Predicaten→Nat
Bergercountn pred def

= count′n pred [] 0

count′n : Predicaten→ ListBool→Nat→Nat
count′n pred start acc def

= if |start|= n then acc + (if pred (λ i.start.i) then return 1
else return 0)

else let f ← bestshot′n pred start in
if pred f then count′′n pred start [f 0, . . . , f (n− 1)] acc
else return acc

count′′n : Predicaten→ ListBool→ ListBool→Nat→Nat
count′′n pred start leftmost acc def

= if |start|= n then acc + 1
else let b← leftmost.|start| in

let acc′← count′′n pred (append start [b])
leftmost acc in

if b then count′n pred (append start [false]) acc′

else return acc′

Fig. 8: An implementation of Berger count in λb

solutions to the provided predicate pred that start with the specified list of booleans, adding
their number to a previously accumulated total given by acc. The function count′′n does the
same thing, but exploiting the knowledge that a best shot at the ‘leftmost’ solution to P
within this subtree has already been computed. (We are visualising n-points as forming
a binary tree with true to the left of false at each fork.) Thus, count′′n will not re-examine
the portion of the subtree to the left of this candidate solution, but rather will start at this
solution and work rightward.

This gives rise to an n-count program that can work efficiently on predicates that tend
to ‘fail fast’: more specifically, predicates P that inspect the components of their argument
q in order q 0, q 1, q 2, . . . , and which are frequently able to return false after inspecting
just a small number of these components. Generalising our program from binary to k-ary
branching trees, we see that the n-queens problem provides a typical example: most points
in the space can be seen not to be solutions by inspecting just the first few components.
Our experimental results in Section 11 attest to the viability of this approach and its
overwhelming superiority over the naïve functional method.

By contrast, the above program is not able to exploit parts of the tree where our predicate
‘succeeds fast’, i.e. returns true after seeing just a few components. Unlike the effectful
count program of Section 5.4, which may sometimes add 2n−d to the count in a single
step, the Berger approach can only count solutions one at a time. Thus, supposing P is an
n-standard predicate, the evaluation of Bergercountn P that returns a natural number c must
take time Ω(c).
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7.4 Pruned count

To do better than Bergercount, it seems that we must ascend to a more powerful language.
We now briefly outline another approach, using ideas from Longley (1999), which yields a
more efficient form of pruned search in an extension of λb with local state of ground type.
Since local state can certainly be encoded using affine effect handlers with no essential
loss of efficiency, this approach falls within the ambit of what can be achieved within the
language λa to be introduced in Section 9.

The key idea is that each time we apply a predicate to a point, we may use local state to
detect which components of the point are actually inspected by the predicate. We do this
using a third-order function Modulus, which encloses the point in a wrapper that logs all
calls to the point, then passes this wrapped point to the predicate:

Modulus : Predicate→ Point→ (Bool× ListNat)

Modulus pred point def
= let log← ref([ ] : ListNat) in

let wrap← λ i.(log := i :: !log; return point i) in
let b← pred wrap in
return ⟨b, !log⟩

This is somewhat different from the modulus functional considered in Longley (1999), which
returns a sorted list of the arguments to which the point is applied. This has the theoretically
pleasant consequence that the modulus is an example of a sequentially realisable functional
— its externally observable behaviour is purely functional (i.e. extensional) although the
function it implements cannot be realised in pure λb. However, this property is purchased
at the cost of the extra work needed to return a sorted list, and is of little relevance to our
present concerns.

The essential point is that if Modulus pred point returns ⟨b, ilist⟩, we know immediately
that pred point′ would also return the value b for every point′ that agrees with point at the
components listed in ilist. With some further coding, this property can be used as the basis
of a program

prunedcountn : ((Natn→Bool)→Bool)→Nat

that takes care, at each stage, to apply the predicate to some ‘new’ point at which the
value is not already known on the basis of previous calls, and which then increments the
accumulator by either 0 (if the predicate returns false) or the appropriate 2n−d (if it returns
true). In contrast to Bergercount, this has the effect of pruning the search space both where
the predicate fails fast and where it succeeds fast.

Of course, the ability to prune in the ‘true’ case makes no difference for search problems
such as n-queens, where the predicate never returns true without inspecting all components.
Even for searches of this kind, however, prunedcount performs significantly better in
practice than Bergercount, which achieves its pruning of ‘false’ subtrees by much more
convoluted means. (The difference is clearly manifested by the experimental results reported
in Section 11.) Indeed, in the absence of advanced control features, we are not aware of any
approach to generic counting that essentially does better than prunedcount.
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It is clear, however, that in the case of n-standard predicates, which always inspect all
n components of their points, no pruning at all is possible, and neither Bergercount nor
prunedcount improves on the Ω(n2n) runtime of naivecount.

8 A lower bound for λb

The above discussion strongly suggests that the O(2n) runtime of our λh generic count
implementation is unattainable in λb, but also points out the existence of phenomena in this
area that defy intuition (Escardó (2007) gives some striking further examples). In this section,
we prove rigorously that any implementation of generic counting in λb must have runtime
Ω(n2n) on certain n-standard predicates. In the following two sections, we shall apply a
similar analysis to the richer language λa. This mathematically robust characterisation of
the efficiency gap between languages with and without first-class control constructs is the
central contribution of the paper.

One might ask at this point whether the claimed lower bound could not be obviated by
means of some known continuation passing style (CPS) or monadic transform of effect
handlers (Hillerström et al., 2017; Leijen, 2017; Hillerström et al., 2020). This can indeed
be done, but only by dint of changing the type of our predicates P — which, as noted in
the introduction, would defeat the purpose of our enquiry. Our intention is precisely to
investigate the relative power of various languages for manipulating predicates that are
given to us in a certain way which we do not have the luxury of choosing.

As a first step, we note that where lower bounds are concerned, it will suffice to work with
the small-step operational semantics of λb rather than the more elaborate abstract machine
model employed in Section 4.1. This is because, as observed in Section 4.1, there is a tight
correspondence between these two execution models such that for the evaluation of any
closed term, the number of abstract machine steps is always at least the number of small-step
reductions. Thus, if we are able to show that the number of small-step reductions for any
generic count program in λb on the predicates of interest is Ω(n2n), this will establish the
desired lower bound on the runtime.

To establish a formal contrast with λh, it will in fact suffice to show a lower bound of
Ω(n2n) on the worst-case runtime for generic count programs in λb. For this purpose, it is
convenient to focus on a specialised class of predicate terms that will be easy to work with.
We therefore declare that our intention is initially to analyse the runtime of any generic
count program in λb on any canonical n-standard predicate as in Definition 8. However, we
shall subsequently remark that in fact the same lower bound applies to arbitrary n-standard
predicates.

Let us suppose, then, that K is a program of λb that correctly counts all canonical
n-standard predicates of λb for some specific n. We now establish a key lemma, which
vindicates the naïve intuition that if P is a canonical n-standard predicate, the only way for
K to discover the correct value for ♯JPK is to perform 2n separate applications P Q (allowing
for the possibility that these applications need not be performed ‘in turn’ but might be
nested in some complex way).
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Lemma 1 (No shortcuts). Suppose K correctly counts all canonical n-standard predicates
of λb. If P is a canonical n-standard predicate, then K applies P to at least 2n distinct
n-points. More formally, for any of the 2n possible semantic n-points π : Nn→B, there is a
term E [P Q] appearing in the small-step reduction of K P such that Q is an n-point and
JQK= π .

Proof Suppose π is some semantic n-point. Since P is canonical, we have P = P(τ) for
some τ . Let l be the maximal path through τ associated with π: that is, the one we construct
by responding to each query ?k with π(k). Then l is a leaf node such that τ(l) = !(τ • π).
Let τ ′ be obtained from τ by simply negating this answer value at l, and take P′ = P(τ ′).

Since the numbers of true-leaves in τ and τ ′ differ by 1, it is clear that if K indeed
correctly counts all canonical n-standard predicates, then the values returned by K P and
K P′ will have an absolute difference of 1. On the other hand, we shall argue that if the
computation of K P never actually ‘visits’ the leaf l in question, then K will be unable to
detect any difference between P and P′. The situation is reminiscent of Milner’s context
lemma (Milner, 1977), which loosely says that the only way to observe a difference between
two programs is to apply them to some argument on which they differ.

Without loss of generality we shall assume τ(l) = true and τ ′(l) = false. This means that
for some term context C[−] : Bool with a single occurrence of a hole of type Bool, we have
P≡ λq. C[true] and P′ ≡ λq. C[false].

Now consider the reduction sequence starting from K (λq. C[−]) (treating the hole ‘−’
as an additional variable). This cannot be infinite, for then the reduction of K P would also
be infinite, since valid reduction steps are closed under substituting true for ‘−’; thus K
would not correctly count all canonical n-standard predicates. Neither can this reduction
terminate in a numeral c, for then both K P and K P′ would evaluate to c for a similar reason,
whereas the correct results should differ by 1. Nor can it terminate in just the term ’−’, as
this does not have the correct type. We conclude that the reduction of K (λq. C[−]) gets
stuck at some term with the hole in head position: more precisely, since ‘−’ formally has
type ⟨⟩+ ⟨⟩, we see by inspection of the reduction rules that it must get stuck at some term
D [case − {· · · }], where D is an evaluation context. We write this term as D[−], where the
D[ ] abstracts only this head occurrence of the hole (there may well be other occurrences of
the hole within D). From the form of evaluation contexts, we know that this hole occurrence
does not appear under a λ binder.

We now trace back through the reduction K (λq. C[−])⇝∗ D[−] looking at the ancestors
of this occurrence of ‘−’, and identifying the last point in the reduction at which this ancestor
occurs within a descendant of the original λq. C[−]. Since C[−] has no free variables other
than the hole occurrence, and the only rule for eliminating a λ is S-APP, it is clear that
at this point we have a term E [(λq. C[−])Q] with E an evaluation context, C[ ] a context
abstracting only this ancestor occurrence of ‘−’, and Q a closed term of type Point. This
reduces in the next step to E [E[−]] where E[−]≡C[−][Q/q].

We now claim that Q is an n-point and JQK= π as required. For this, we appeal to the fact
that P≡ λq. C[true] is canonical, so that C[−] is simply a complex of nested if-expressions
as in Definition 8, with a hole replacing the leaf literal at the position indicated by the path
l. It follows that E[−] itself is a complex of nested if-expressions with branch conditions
Q(k) and with the hole at one of the leaves. It is now clear that the only way for this hole
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to become later exposed (as it is in D[−]) is for each of the branch conditions Q(k) to
evaluate to π(k), so that the evaluation indeed follows the path l and we have E[−]⇝∗ −.
But because τ is n-standard, each of Q(0), . . . , Q(n− 1) occurs exactly once on this path,
so the above is exactly the condition for Q to be an n-point with value π . ■

Corollary 1. Suppose K and P are as in Lemma 1. For any semantic n-point π and any
natural number k < n, the reduction sequence for K P contains a term F [Q k], where F is
an evaluation context and JQK= π .

Proof Suppose π ∈Bn. By Lemma 1, the computation of K P contains some E [P Q] where
JQK= π , and the above analysis of the computation of P Q shows that it contains a term
E ′[Q k] for each k < n. The corollary follows, taking F [−] def

= E [E ′[−]]. ■

This gives our desired lower bound. Since our n-points Q are values, it is clearly impos-
sible that F [Q k] =F ′[Q′ k′] (where F ,F ′ are evaluation contexts) unless Q = Q′ and
k = k′. We may therefore read off π from F [Q k] as JQK. There are thus at least n2n distinct
terms in the reduction sequence for K P, so the reduction has length ≥ n2n. We have thus
proved:

Theorem 3. If K is a λb program that correctly counts all canonical n-standard λb predi-
cates, and P is any canonical n-standard λb predicate, then the evaluation of K P must take
time Ω(n2n).

In Hillerström et al. (2020) a more complex proof was given, modelled on traditional
proofs of Milner’s context lemma. This established the slightly stronger conclusion that the
evaluation of K P takes time Ω(n2n) for all n-standard predicates P, not just the canonical
ones (under the strengthened hypothesis that K correctly counts all n-standard λb predicates).

It is worth noting where our argument breaks down if applied to λh. In λb, in the course of
computing K P, every Q to which P is applied will be a self-contained closed term denoting
some specific point π . This is intuitively why we may only learn about one point at a time.
In λh, this is not the case, because of the presence of operation symbols. For instance, our
effcount program from Section 5.4 will apply P to the ‘generic point’ λ_. do Branch ⟨⟩.
Thus, it need no longer be the case that the reduction of each term Q k yields a value: it may
get stuck at some invocation of ℓ, so that control will then pass to the effect handler.

9 Affine effect handlers

Having established our Ω(n2n) runtime bound for implementations of generic count in the
relatively simple setting of λb, we now wish to show that the same bound applies for a
much richer language λa supporting affine effect handlers: intuitively those in which each
resumption r may be invoked at most once. This will show that the multiple invocation
of r within our effcount program is essential to its efficiency, and will formally locate the
fundamental efficiency gap as occurring between λa and λh. Since affine effect handlers
suffice for encoding many language features such as exceptions (Pretnar, 2015), local
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state (Plotkin and Pretnar, 2009), coroutines (Kawahara and Kameyama, 2020), and single-
shot continuations (Sivaramakrishnan et al., 2021), this will come close to showing that the
speedup we have discussed is unattainable in real languages such as Standard ML, Java,
and Python (for some appropriate class of predicate terms).

In this section, we present the definition of our language λa, outlining its relationship to
λh and λb. In the following section, we will prove some key properties of evaluation in this
language, and use these to establish a version of Theorem 3 for λa.

Our language λa will be essentially a sublanguage of λh in which the relevant restriction on
the use of resumption variables is enforced by means of an affine type system in the tradition
of linear logic. Many approaches are possible here, for instance: Girard’s intuitionistic linear
logic ILL (Girard, 1987), Barber’s dual intuitionistic linear logic DILL (Barber, 1996), and
Benton’s adjoint calculus (Benton, 1994). We choose to work with a variant of fine-grain
call-by-value based on DILL; an advantage over vanilla ILL is that it readily admits a local
encoding of our intuitionistic base calculus.

9.1 λa as a dual intuitionistic-affine calculus

We present the type system of λa in terms of dual-context judgements ∆; Γ ⊢□ : A, stating
that a term □ (which may be a value term V or a computation term M) has type A under
intuitionistic type environment ∆ and affine type environment Γ. Informally, variables in the
intuitionistic environment may be used zero, one or many times within □, while those in
the affine environment may be used at most once.

As before, environments are lists assigning types to variables. For hygiene, we suppose
we have disjoint lexical categories of intuitionistic and affine variables (each ranged over by
metavariables x, y), and the variables within each of the environments ∆, Γ are required to
be distinct.

The syntax of λa is as follows:

Types A, B, C, D ::= Nat |Unit | A⊸ B | A⊗ B | A⊕ B |!A
Type Environments ∆ ::= · | ∆, x : A

Γ ::= · | Γ, x : A
Handler types F ::= C⇒D
Values V, W ::= x | k | c | λxA. M | rec f A→B x.M

| ⟨⟩ | ⟨V, W⟩ | inlB V | inrA W |!W
Computations M, N ::= V W | let ⟨x, y⟩= V in N

| case V {inl x 7→M; inr y 7→N}
| return V | let x←M in N | let! x = V in N
| do ℓ V | handle M with H

Handlers H ::= {val x 7→M} | {ℓ p r 7→N} ⊎H

The type constructors⊸,⊗,⊕, and ! are borrowed from linear logic. Here we informally
understand Nat, Unit, A⊸ B, A× B, and A⊕ B as types of values that may be used at most
once, and !A as a type of values of type A that may be used as many times as desired. (The
way DILL manifests the latter is to allow a value of !A to be used at most once by binding
it to an intuitionistic variable of type A which can subsequently be used as many times as
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desired. Thus, technically !A is affine just like all other types, but it provides access to an
unlimited source of identical affine values of type A.)

The typing rules those shown in Figure 9, along with Exchange, Weakening and
Contraction for the intuitionistic environment, and Exchange and Weakening (but not
Contraction) for the affine one. To understand the workings of this type system, it is helpful
to think of the affine arrow⊸ and the affine environment Γ as playing the primary role:
for instance, lambda abstraction is supported for affine variables but not intuitionistic ones.
The sole purpose of the intuitionistic environment is to allow for multiple uses of values of
!-type: the rule TL-LETBANG allows such a value to be bound to an intuitionistic variable.
Note too that values of !-type are formed via the TL-BANG rule, which allows a value W : A
to be ‘promoted’ to a reusable value !W :!A if all free variables that went into the making of
W are themselves reusable (we here write !Γ to mean that every type in Γ is of the form !A
for some A).

The crucial restrictions in the rule for handlers are that the operation argument p and
the resumption variable r are now affine. Notice that the return clause may involve affine
variables as it will be invoked at most once (this idea will be substantiated in Section 10
below). By contrast, the operation clauses cannot involve affine variables as they may be
invoked multiple times.

There is also a small subtlety with rec. The function argument f is bound in the intu-
itionistic type environment, allowing f to be used many times within M. The operational
intention is that f can be unfolded to λx.M as often as necessary; for this reason, it is
required that M involves no affine variables other than x.

All of the above syntactic forms are shared with λh, with the exception of !W and
let! x = V in N.

To give a small-step operational semantics for λa, we may therefore take all the operational
rules for λh as given in Section 3 (along with the machinery of evaluation contexts and
handler contexts), together with the new rule:

S-BANG let! x =!W in N ⇝ N[W/x]

As usual, we take⇝∗ to be the transitive closure of⇝, and define the notions of ancestor
and descendant in the evident way. This completes our definition of λa.

The notion of normal form may now be defined just as in Definition 1. Once again, the
following is straightforward to verify:

Theorem 4 (Type Soundness for λa). If ⊢M : C, then either there exists ⊢N : C such that
M⇝∗ N and N is normal with respect to Σ, or M diverges.

9.2 Relationship to λh and λb

We now outline how we intend to view λa as a sublanguage of λh, and λb as a sublanguage
of λa. A brief sketch will suffice here, as these translations will only play a minor role in
what follows and are mentioned here mainly for the sake of orientation.

For the inclusion λa ↪→ λh, the broad idea is simply that any well-typed term of λa will
certainly remain well-typed if all affineness restrictions on variables are waived. Formally,
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Values
TL-IVAR

x : A∈ ∆

∆; Γ ⊢ x : A

TL-AVAR

x : A∈ Γ

∆; Γ ⊢ x : A

TL-UNIT

∆; Γ ⊢ ⟨⟩ : Unit

TL-NAT

k ∈N
∆; Γ ⊢ k : Nat

TL-CONST

c : A⊸ B

∆; Γ ⊢ c : A⊸ B

TL-LAM

∆; Γ, x : A ⊢M : B

∆; Γ ⊢ λxA. M : A⊸ B

TL-REC

∆, f : A⊸ B; x : A ⊢M : B

∆; · ⊢ rec f A⊸B x. M : A⊸ B

TL-PROD

∆; Γ1 ⊢ V : A ∆; Γ2 ⊢W : B

∆; Γ1, Γ2 ⊢ ⟨V, W⟩ : A⊗ B

TL-INL

∆; Γ ⊢ V : A

∆; Γ ⊢ inlB V : A⊕ B

TL-INR

∆; Γ ⊢W : B

∆; Γ ⊢ inrA W : A⊕ B

TL-BANG

∆; Γ ⊢W : A !Γ

∆; Γ ⊢ !W : !A

Computations
TL-APP

∆; Γ1 ⊢ V : A⊸ B ∆; Γ2 ⊢W : A

∆; Γ1, Γ2 ⊢ V W : B

TL-SPLIT

∆; Γ1 ⊢ V : A⊗ B ∆; Γ2, x : A, y : B ⊢N : C

∆; Γ1, Γ2 ⊢ let ⟨x, y⟩= V in N : C

TL-CASE

∆; Γ1 ⊢ V : A⊕ B ∆; Γ2, x : A ⊢M : C ∆; Γ2, y : B ⊢N : C

∆; Γ1, Γ2 ⊢ case V {inl x 7→M; inr y 7→N} : C

TL-RETURN

∆; Γ ⊢ V : A

∆; Γ ⊢ return V : A

TL-LET

∆; Γ1 ⊢M : A ∆; Γ2, x : A ⊢N : C

∆; Γ1, Γ2 ⊢ let x←M in N : C

TL-LETBANG

∆; Γ1 ⊢ V : !A ∆, x : A; Γ2 ⊢N : C

∆; Γ1, Γ2 ⊢ let! x = V in N : C

TL-DO

(ℓ : A→ B)∈ Σ ∆; Γ ⊢ V : A

∆; Γ ⊢ do ℓ V : B

TL-HANDLE

∆; Γ1 ⊢M : C ∆; Γ2 ⊢H : C⇒D

∆; Γ1, Γ2 ⊢ handle M with H : D

Handlers
TL-HANDLER

Hval = {val x 7→M} [Hℓ = {ℓ p r 7→Nℓ}]ℓ∈dom(Σ)

∆; Γ, x : C ⊢M : D [∆; p : Aℓ, r : Bℓ⊸D ⊢Nℓ : D](ℓ:Aℓ→Bℓ)∈Σ

∆; Γ ⊢H : C⇒D

Fig. 9: Typing Rules for λa
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we may define a translation (−)† that erases the intuitionistic/affine distinction completely.
The translation on types may be defined by

Nat† = Nat
Unit† = Unit

(A⊸ B)† = A†→ B†

(A⊗ B)† = A† × B†

(A⊕ B)† = A† + B†

The translation on terms is given in the obvious way for the syntactic forms common to
λa and λh, the two new forms being treated by

(!W)† = W†

(let! x = V in N)† = let x← return V† in N†

A typing judgement ∆; Γ ⊢□ : A of λa then becomes a judgement (∆, Γ)† ⊢□† : A†,
where ∆, Γ is the result of rolling ∆ and Γ into a single environment, and (∆, Γ)† is the
result of applying (−)† to the types of all its variables.

Under this translation, it is easy to check that every derivable typing judgement in λa

yields one in λh, and also that if M⇝M′ in λa then M†⇝M′† in λh.
For the inclusion λb ↪→ λa, we give a translation (−)⋆ based on the familiar Girard

translation from intuitionistic types to linear ones, wrapping each subformula of a type by a
‘!’ except for the return types of functions. The translation on types is as follows.

Nat⋆ = Nat
Unit⋆ = Unit

(A→ B)⋆ = !(A⋆)⊸ B⋆

(A× B)⋆ = !(A⋆)⊗ !(B⋆)

(A + B)⋆ = !(A⋆)⊕ !(B⋆)

A type environment Γ of λb translated to the environment Γ⋆; · of λa: that is, all variables
are treated as intuitionistic. The translation of value and computation terms therefore needs
to eliminate ‘!’ types at bindings in favour of intuitionistic variables. We give here a selection
of the clauses for the translation on terms; for all syntactic forms not covered here, the
translation is defined homomorphically on term structure in the obvious way.

(λxA.M)⋆ = λ z!(A⋆). let! x = z in M⋆

(rec f A→B x.M) = rec f !(A⋆)⊸B⋆
z. let! x = z in M⋆

(V W)⋆ = V⋆ (!(W⋆))

(let ⟨x, y⟩= V in N)⋆ = let ⟨x′, y′⟩= V⋆ in let! x = x′ in let! y = y′ in N⋆

(case V {inl x 7→M; inr y 7→N}) = case V⋆ {inl x′ 7→ let! x = x′ in M⋆;
inr y′ 7→ let! y = y′ in N⋆}

(let x←M in N)⋆ = let x′←M⋆ in let! x = x′ in N⋆

Once again, it is routine to check that every derivable typing judgement in λb yields one
in λa, and that if M⇝M′ in λb then M†⇝∗M′† in λa.
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10 Affine effect computations and generic count

We begin with some general machinery for managing resumptions and for tracking the
evaluation of subterms through reductions, allowing for the ‘thread-switching’ behaviour
that λa supports. We expect that this machinery will be quite widely applicable to any kind
of reasoning about the behaviour of effectful programs in λa. In Section 10.3 we apply this
machinery to the specific scenario of the generic count problem.

Throughout this section, ‘subterm’ will always mean ‘subterm occurrence’.

10.1 Tracking of resumptions

To make the role of resumptions more explicit, it will be convenient to recast the small-step
operational semantics for λa slightly, presenting it as a reduction system for pairs ⟨M | Ξ⟩,
where M is a term and Ξ is a resumption environment, mapping finitely many resumption
variables r̂ to terms of the form λy. handle E [return y] with H. Note that these terms may
themselves involve other resumption variables.

The only reduction rules in which Ξ plays an active role are the following. We write Ξ\r̂
for Ξ with the entry for r̂ deleted.

S-OP′ ⟨handle E [do ℓ V] with H | Ξ⟩⇝ ⟨N[V/p, r̂/r]
| Ξ, r̂ 7→ λy. handle E [return y] with H⟩

where Hℓ = {ℓ p r 7→N}, r̂ fresh
S-RES ⟨r̂W | Ξ⟩⇝ ⟨R[W/y] | Ξ\r̂⟩ where Ξ(r̂) = λy. R

S-LIFT′ ⟨H [M] | Ξ⟩⇝ ⟨H [M′] | Ξ′⟩, if ⟨M | Ξ⟩⇝ ⟨M′ | Ξ′⟩

All other reduction rules are carried over from the original semantics in the obvious way: for
each reduction rule M⇝M′ except for S-OP, we now have a rule ⟨M | Ξ⟩⇝ ⟨M′ | Ξ⟩. To
initiate a reduction sequence for a closed term M, we start from the configuration ⟨M | /0⟩.

The main purpose of this semantics is to make explicit the points at which resumptions
are invoked (as the points at which S-RES is applied). In the original semantics, such steps
appear simply as β -reductions, which may not be distinguishable, on the face of it, from
other β -reductions that occur.

It is intuitively clear that the reduction of ⟨M | /0⟩ under the new semantics proceeds in
lockstep with the reduction of M under the original semantics. One half of this is formalised
by the following proposition (we write⇝m for reduction in exactly m steps).

Proposition 2. For any m, if ⟨M | /0⟩⇝m ⟨M′ | Ξ⟩ then M⇝m M′′, where M′′ is obtained
from M′ by repeatedly expanding all resumption variables as specified by Ξ until no longer
possible.

Proof Easy induction on m. Note that in the case of S-OP′, the number of rounds of
expansion needed may increase by 1. ■

The converse to the above proposition — that if M⇝m M′′ then ⟨M | /0⟩⇝m ⟨M′ | Ξ⟩ for
some M′, Ξ — is not quite clear at this point, because of the worry that an application of
S-RES might be blocked because the relevant r̂ is not present in dom Ξ, having been deleted
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by an earlier application of S-RES. We shall see shortly, however, that such blocking never
happens, so that our two semantics do indeed work perfectly in lockstep.

Let us say a configuration ⟨M′ | Ξ⟩ is naturally arising if it appears in the course of
reduction of ⟨M | /0⟩ for some closed M.

In the typing rules for λa, the critical typing restriction is that in the handler clauses
ℓ p r 7→Nℓ, the variable r is used affinely within Nℓ. This does not mean that r can occur
at most once within Nℓ (in view of the TL-CASE rule); and even if it does, the variable r
may subsequently be copied in the course of a β -reduction (again because of TL-CASE).
However, the affineness restriction does buy us the following crucial property:

Lemma 2 (Single-shot resumptions). For any naturally arising ⟨M | Ξ⟩ and any r̂ ∈ dom(Ξ),
the reduction sequence starting from ⟨M | Ξ⟩ contains at most one instance of S-RES for
the variable r̂.

Proof Since ⟨M | Ξ⟩ is naturally arising, we have ⟨M0 | /0⟩⇝∗ ⟨M | Ξ⟩ for some M0, and
we may as well assume that ⟨M | Ξ⟩ appears as early as possible in this reduction, i.e. at the
point where r̂ is introduced, so that M has the form N[V/p, r̂/r] as in the S-OP′ rule.

We first claim that in this situation, M, Ξ satisfy the following two conditions, writing
r̂0, . . . , r̂k−1 for the elements of dom(Ξ).

1. r̂ appears in at most one of the k + 1 terms M, Ξ(r̂0), . . . , Ξ(r̂k−1).
2. If N is one of these terms and r̂ appears in N, then no two occurrences of r̂ within N

share the same set of enclosing case clauses. (A case clause is a subphrase inl x 7→ P
or inr y 7→Q within a case expression.)

Condition 1 holds because r̂ is fresh and so does not appear in any of the Ξ(r̂i). Condition
2 is a general property of occurrences of affine variables within terms: an inspection of
the typing rules shows that the TL-CASE rule is the only possible source of multiple
occurrences of r̂, and it is clear that if we know the set of enclosing case clauses then the
occurrence is uniquely determined.

Next, we claim that Conditions 1 and 2 above are maintained as invariants by all the
reduction rules of our new semantics. Since Condition 2 is a general property of affine
variables, and our reduction rules are easily seen to respect the type system, the preservation
of this condition is automatic, so it will suffice to show that Condition 1 is preserved. We
reason by cases on the possible forms for a reduction ⟨M | Ξ⟩⇝ ⟨M′ | Ξ′⟩.

• For S-OP′ (applied within some handler context H and introducing a fresh r̂′):
Suppose r̂ appears within the relevant subterm handle E [do ℓ V] with H (the situation
for occurrences of r̂ elsewhere is straightforward). Since this subterm is in evaluation
position, it is not within a case clause, so by Conditions 1 and 2 for ⟨M | Ξ⟩, there
are no other occurrences of r̂ elsewhere, and all occurrences are within just one of
E [ ], V, H. If they are within V , then because of the affineness of p within N, r̂ may
appear within the resulting term N[V/p, r̂′/r], but will not appear in the new Ξ′(r̂′) or
elsewhere. If within E [ ] or H, the occurrences of r̂ will all be moved to Ξ′(r̂′), and
there will be none elsewhere.



1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

Journal of Functional Programming 41

• For S-RES (applied to some subterm r̂′W within some H ): If r̂ occurs within W, it
may appear within the resulting R[W/y], but not elsewhere. If r̂ occurs within Ξ(r̂′)
(i.e. within R), then it does not appear elsewhere in ⟨M | Ξ⟩. So after the application
of S-RES and the deletion of r̂′ from Ξ, r̂ may appear in R[W/y] but nowhere else.

• For the rules carried over from the original semantics (applied within some H ), the
preservation of Condition 1 is immediate, since Ξ is unchanged.

To complete the proof, suppose that within the reduction sequence from some naturally
arising ⟨M | Ξ⟩ we have an application of S-RES for a given variable r̂: that is, we have
some configuration ⟨H [r̂W] | Ξ′⟩. Since this satisfies Conditions 1 and 2, we see that the
highlighted occurrence of r̂ is its only appearance within H [r̂W] or the range of Ξ′, and it
follows that r̂ does not appear at all within the resulting configuration ⟨H [R[W/y]] | Ξ′\r̂⟩.
There is therefore no danger of a later instance of S-RES for r̂. ■

We can now lay to rest the worry mentioned earlier:

Proposition 3. (i) For any naturally arising ⟨M | Ξ⟩, all free variables appearing within M
or any Ξ(r̂) are contained in dom Ξ.

(ii) If M⇝m M′′ under the original rules, then ⟨M | /0⟩⇝m ⟨M′ | Ξ⟩ for some M′, Ξ.

Proof (i) The property in question clearly holds for initial configurations ⟨M | /0⟩ with M
closed, and it is easy to see that it is preserved by all reduction steps, given that S-RES

completely expunges the variable r̂ as established within the proof of Lemma 2.
(ii) From (i) we know that an application of S-RES will never be blocked by the failure of a

lookup Ξ(r̂) fails. A reduction M⇝m M′′ can therefore be lifted to one ⟨M | /0⟩⇝m ⟨M′ | Ξ⟩
where M′, Ξ, M′′ are related as in Proposition 2, by induction on m and an easy comparison
between the two reduction systems. ■

Lemma 2 is the crucial property of λa on which our whole argument hinges. This property
is flagrantly violated by λh, as illustrated by effcount with its essential use of multi-shot
resumptions. Our next task is to show how, in view of Lemma 2, the evaluation of a given
subterm may be tracked in a sequential way through a reduction sequence.

10.2 Tracking of active subterms

We shall say a subterm S of M is active if it occurs in an evaluation position, i.e. M =

H [S] for some handler context H . We introduce the following concepts for tracking the
evaluation of S through the reduction of M with respect to some resumption context Ξ.

Clearly, if ⟨M | Ξ⟩ is naturally arising and M =H [S], any reduction sequence ⟨S | Ξ⟩⇝∗
⟨S′ | Ξ′⟩ will yield a reduction sequence

⟨M | Ξ⟩ ≡ ⟨H [S] | Ξ⟩ ⇝∗ ⟨H [S′] | Ξ′⟩

We then say the occurrence of S′ highlighted by H [S′] is an active reduct of the original
occurrence of S highlighted by H [S].

In this situation, there are four possibilities:

1. The reduction of ⟨S | Ξ⟩ may continue forever.
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2. The reduction may terminate in some ⟨return V | Ξ′⟩ where V is a closed value.
3. The reduction of ⟨S | Ξ⟩ may get stuck at some configuration ⟨E [do ℓ V] | Ξ′⟩ where

the do ℓ V is not handled anywhere within H [do ℓ V] — in this situation, we say the
entire computation is absolutely blocked.

4. The reduction may get stuck at some ⟨E [do ℓ V] | Ξ′⟩, where the do ℓ V is not handled
within E [do ℓ V] itself, but is handled further out within H [−].

In case 4, H [−] will have the form H ′[handle F [−] with H] where F is an evaluation
context, and the S-OP′ rule will then apply to ⟨handle F [E [do ℓ V]] with H | Ξ′⟩. This will
result in a new resumption environment entry

r̂ 7→ λy. handle F [E [return y]] with H

and we may call the subterm E [return y] here a dormant reduct of the original S.
As the reduction of the original ⟨M | Ξ⟩ continues, this environment entry will remain

unaffected until, if ever, r̂ is activated by S-RES (and by Lemma 2, this will happen at most
once). This activation step will have the form

⟨H ′
1 [r̂W] | Ξ1⟩ ⇝ ⟨H ′

1 [handle F [E [return W]] with H] | Ξ1⟩

where H ′
1 [handle F [−] with H] is itself a handler context, which we shall write as H1[−]

for compatibility with our earlier convention. So writing S1 for E [return W], we have
arrived at

⟨M | Ξ⟩ ⇝∗ ⟨H1[S1] | Ξ1⟩,

and we shall again designate this occurrence of S1 as an active reduct of the original S.
For the purpose of tracking the fate of the original subterm S, it will also be convenient to

say that ⟨S | Ξ⟩ gives rise in this context to a pseudo-reduction sequence

⟨S | Ξ⟩ ⇝∗ ⟨E [do ℓ V] | Ξ′⟩ ⇝! ⟨S1 | Ξ1⟩

in which all steps but the last are genuine reductions, but the step flagged by⇝! is considered
as a ‘pseudo-reduction’ (note that this step has a seemingly ‘non-deterministic’ character in
that it depends crucially on information from outside ⟨E [do ℓ V] | Ξ′⟩). The point is simply
to have a way of saying how the evaluation of E [do ℓ V] continues after being temporarily
suspended by a switch to another thread of control.

We may now repeat exactly the same procedure starting from ⟨H1[S1] | Ξ1⟩, potentially
yielding further (active and dormant) reducts of the original S:

⟨S | Ξ⟩ ⇝∗ ⟨E [do ℓ V] | Ξ′⟩ ⇝! ⟨S1 | Ξ1⟩ ⇝∗ ⟨E1[do ℓ1 V1] | Ξ′1⟩ ⇝! ⟨S2 | Ξ2⟩ ⇝∗ · · ·

In this way, we obtain an extended pseudo-reduction sequence for S, consisting of ordinary
reduction sequences interspersed with pseudo-reductions of the above kind, jumping straight
from some ⟨Ei[do ℓi Vi] | Ξi⟩ to the corresponding ⟨Ei[return Wi] | Ξi+1⟩.

This pseudo-reduction sequence may continue forever, or it may be absolutely blocked,
or it may end with a dormant reduct in a resumption environment entry that is never
subsequently activated, or it may terminate in some ⟨return V | Ξ′i⟩ where V is a closed
value. In the last case, we say the evaluation of the original S completes (in the context of
⟨H [S] | Ξ⟩).
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It is thanks to Lemma 2 that the evaluation behaviour of S may be represented in this
way by a single linear reduction sequence rather than by a branching tree. The notion of
pseudo-reduction sequence thus allows us to reason about subterm evaluations much as in
the familiar setting, rendering the thread-switching machinery largely transparent, its only
trace being in the ‘non-deterministic’ character of the pseudo-reduction steps.

It is also clear that the notions of ancestor and descendant make sense for subterms
appearing within pseudo-reduction sequences, providing one considers configurations
⟨S | Ξ⟩ as a whole: a subterm within the main term may have descendants within the
resumption environment, and vice versa. For a pseudo-reduction step ⟨S | Ξ⟩⇝! ⟨S′ | Ξ′⟩,
we say a subterm of the right-hand side is a descendant of one on the left iff it is a descendant
with respect to the genuine reduction sequence that witnesses this pseudo-step.

10.3 Application to generic count

We now apply the above notions to the analysis of generic counting in λa, obtaining a lower
bound analogous to that of Theorem 3 for λb. Proceeding as in Section 8, we fix n∈N,
and suppose that K is some program of λa that correctly counts all canonical n-standard
predicates P (noting that all such predicates are actually terms from our base language λb).
Once again, focusing on this restricted class of predicates will greatly simplify our task,
while still giving all we need for a worst-case lower bound.

We recall here that we are thinking of λb as included in λa via the intuitionistic encoding
(−)⋆ defined in Section 9. Since our intention is that our lower bound for λa should
generalise the one for λb, this means that the types Point and Predicate appear within λa as

Point def
= !Nat⊸Bool, Predicate def

= !Point⊸Bool

Formally, then, we will be considering the reduction behaviour of ⟨K (!P) | /0⟩, where
P : Predicate is the ⋆-translation of a canonical n-standard predicate, K is a generic count
program of λa assumed to count all such predicates correctly. (We may assume without loss
of generality that K is a closed term.) By hypothesis, this reduction will terminate in some
⟨return c | Ξend⟩ where c is a numeral.

By an application of P, we shall mean an occurrence of a term P Q in evaluation position
in some reduct of ⟨K (!P) | /0⟩ (so that ⟨K (!P) | /0⟩⇝∗ ⟨H [P Q] | Ξ0⟩ for some handler
context H ), where we require that the P in P Q is a descendant of the original P. As a
significant consequence of our typing of P, the argument Q here will be of type !Point,
meaning that no resumption variable r̂ may appear in Q (recall that resumption variables are
not of !-type). However, such terms Q may well exhibit effectful behaviour in other ways:
they may contain do invocations to be handled elsewhere within K, and they may contain
their own handle expressions.

For any such application of P, we may consider the pseudo-reduction sequence for P Q
arising from the reduction of ⟨H [P Q] | Ξ0⟩. In view of the special form of the canonical
predicate P (see Definition 8), it is clear that this pseudo-reduction sequence will have the
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following form, or some initial portion thereof:

⟨P Q | Ξ0⟩ ⇝∗ ⟨E0[Q k0] | Ξ0⟩ ⇝∗,! ⟨E0[b0] | Ξ1⟩
⇝∗ ⟨E1[Q k1] | Ξ1⟩ ⇝∗,! ⟨E1[b1] | Ξ2⟩
· · ·
⇝∗ ⟨En−1[Q kn−1] | Ξn−1⟩ ⇝∗,! ⟨En−1[bn−1] | Ξn⟩
⇝∗ ⟨return b | Ξn⟩

Here each Ei[−] has its unique hole occurrence at the head of an if-expression corresponding
to one of the nested if-expressions within P itself.

We think of the above pseudo-reduction as a sequence of ‘P-phases’ alternating with
‘Q-phases’. The former are the portions designated by⇝∗: these are short sequences of
genuine reductions concerned with the evaluation of the canonical n-standard predicate P
in this instance. The latter are the portions designated by⇝∗,!, which may mix genuine
reduction steps with pseudo ones. Clearly, no Q-phase can run forever, since the whole
computation ⟨K (!P) | /0⟩⇝∗ ⟨return c | Ξend⟩ is finite. Likewise, the pseudo-reduction for
P Q can never block absolutely, as this too would prevent the whole computation from
completing. Nonetheless, it is quite possible that a computation for P Q may hang because
one of the Q-phases is suspended by a do operation and never thereafter resumed. We say
an application of P is successful if it evaluates all the way to some boolean b as indicated
above.

In the case of a successful application, we see that the P-phases consist of precisely
the reductions that feature in the definition of the tree U (P): in the notation of the above
reduction scheme, the computation is tracing out the path b0 . . . bn−1 through this tree.
Bearing in mind that P is assured to be n-standard, we may conclude that {k0, . . . , kn−1}=
{0, . . . , n− 1} and that U (P)(b0 . . . bn−1) =!b.

We may now, ‘with hindsight’, identify the semantic n-point to which P was in effect
applied: namely, the point π given by π(ki) = bi for each i. Notice that in the setting of λb,
this semantic point could be read off at the point of application simply as JQK; however, this
is not possible here, since the behaviour of do operations within Q need not be determined
by Q itself, and indeed may vary according to the context in which Q appears. Nonetheless,
in the above situation, it is convenient to refer to our P Q as an application of P to π .

The crucial claim is now the following:

Lemma 3. For each of the 2n semantic n-points π , the reduction of ⟨K (!P) | /0⟩ contains an
application of P to π .

Proof Essentially the same argument as for Lemma 1. We may suppose P = P(τ). Given
any semantic point π , we may identify the associated path b0 . . . bn−1 through τ and the
corresponding leaf literal within the body of P; we write C[−] for the context that abstracts
on this leaf literal. Assuming without loss of generality that this literal is true, we then have
P≡ λq. C[true], and we also set P′ ≡ λq. C[false].

We now consider the reduction sequence from ⟨K (!(λq. C[−])) | /0⟩, carrying the hole
‘−’ through the computation. Just as in Lemma 1, we argue that this hole must at some point
reach the head of a case expression in evaluation position, and by looking at the last ancestor
of this hole occurrence that does not appear within a descendant of the original λq. C[−], we
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see that at this point we have a configuration ⟨H [(λq. C[−])Q] | Ξ⟩ with Q a closed term of
type Point. This reduces in the next step to ⟨H [E[−]] | Ξ⟩, where E[−]≡C[−][Q/q]. (Note
that we are here considering the entire top-level computation, and are tracking subterms
through genuine reductions, not pseudo-reductions.)

In the present setting, we cannot conclude that JQK= π — indeed, JQK as defined in
Definition 2 has no clear meaning if Q invokes operations that it cannot handle. Nevertheless,
it is again the case that E[−] is a complex of nested if expressions with various branch
conditions Q k, and with the unique hole at the leaf at position l. The idea now is that the
only way for the hole to become later exposed at the head of an active case expression is for
these enclosing if expressions to be successively stripped away until the hole is exposed, and
this can only happen if each of the relevant conditions Q k evaluates (by pseudo-reduction)
to the corresponding π(k).

More formally, we have that E[−] has the form if Q k0 · · · , which desugars to let z←
Q k0 in case z {· · · }. Now consider the pseudo-reduction sequence for Q k0. This cannot
continue for ever or be absolutely blocked, for then the same would happen with true
substituted for ‘−’ and the computation of P(!Q) would not complete. We also claim that it
cannot end with a dormant reduct that is never reactivated. To see this, we first note that
the pseudo-reduction sequence for let z←Q k0 in · · · exactly tracks the one for Q k0 for as
far as the latter extends (this is easy to check, since no handler intervenes between these
terms). So if the sequence for Q k0 ended in a dormant reduct, the same would be true
for let z←Q k0 in · · · , whose pseudo-reduction sequence carries with it the critical hole
occurrence. Thus, this hole occurrence would remain forever dormant in the resumption
environment and so would never become exposed.

We conclude that the pseudo-reduction of Q k0 must complete with some boolean value b,
so that the enclosing let expression reduces to case b {· · · }. Furthermore, this value b must
be b0 = π(k0) if the hole is not to be eliminated at the next step. After applying one of the
S-CASE rules, we are now left with one of the if expressions from the second level of the
original E[−], say with branch condition Q k1, and the same argument now shows that this
must pseudo-reduce to the boolean value b1 = π(k1). Continuing in this way, we arrive at a
pseudo-reduction of ⟨(λq. C[−])Q | Ξ⟩ to return−, and under specialisation of ‘−’ to true,
we obtain precisely a successful pseudo-reduction of ⟨P Q | Ξ⟩ to true. Moreover, since our
computation has traced the path b0 . . . bn−1 through the term structure of P, we have here
an application of P to π in the sense introduced above. ■

Theorem 5. If K is a λa program that correctly counts all canonical n-standard λb predi-
cates, and P≡ λq. C[true] is a canonical n-standard λb predicate, then the evaluation of
K (!P) takes time Ω(n2n).

Proof It is clear from the above analysis that in the evaluation of K (!P). there are at least 2n

successful applications of P, and that each of these involves, at the very least, the n S-CASE

reductions of the subterms Ei[bi]≡ if bi · · · ≡ case bi {· · · }. To complete the proof, we just
need to check that none of these reduction steps can be shared by two successful applications
of P associated with different semantic points π, π ′. For this, we show that given such an
S-CASE reduction step, we may uniquely locate the application P Q that gave rise to it.
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Suppose, then, that within the evaluation of K (!P) we are given such a reduction step,
reducing a subterm case bi {inl ⟨⟩ 7→ R; inr ⟨⟩ 7→ R′} to R or R′ as appropriate. Note that this
subterm does not appear within a λ expression, since we never reduce under a λ . Moreover,
if this reduction step indeed features in the pseudo-reduction for some P Q as displayed
above, then R and R′ are themselves descendants of subterms within C[true][Q/q], and
indeed are either boolean literals or expressions if Q k′ · · · .

Let us now trace the ancestors of R (say) back as far as possible through the entire
computation of K (!P). There are two cases. If R is a boolean return b, this will have an
ancestor within P itself in the application P Q, and it is clear from the displayed form of
the pseudo-reduction that this will be the latest ancestor that occurs under a λ (within
the main term as opposed to the resumption environment); and this property serves to
pinpoint the application P Q. If R≡ if Q k′ · · · , then its earliest ancestor will be within the
term C[true][Q/q] to which P Q contracts, when R came into existence as the result of the
substitution [Q/q]. Once again, this information suffices to pinpoint P Q. Thus, it is uniquely
determined with which successful application the given S-CASE step is associated. ■

As with Theorem 3, one may also obtain a variant of this theorem with both occurrences
of ‘canonical’ omitted, at the cost of significant extra complication in the proof.

Taken together, Theorems 5 and 2 highlight the fundamental efficiency gap between λa

and λh.

11 Experiments

The theoretical efficiency gap between realisations of λb and λh manifests in practice.
We report here on runtime experiments undertaken in OCaml involving two search-like
problems: the familiar n-queens problem, and the problem of computing definite integrals
of mathematical functions in the setting of exact real-number computation. Our work here
builds on earlier experiments described by Daniels (2016).

Tables 1 and 2 show the speedup from using an effectful implementation of generic
search over various other implementations. We discuss the benchmarks and results in further
detail below.

Methodology For both our search problems, we consider general predicates rather than
only n-standard predicates. We evaluate an effectful implementation of generic search
against three other implementations:

• Naïve: a pure functional implementation of the simple procedure described in
Section 7.1,

• Berger: a lazy pure functional generic search procedure as outlined in Section 7.3.
• Pruned: the pruned search procedure of Section 7.4, using a Modulus operator imple-

mented using local state. This is essentially the best currently known approach to
generic search that does not involve advanced control features.

Each benchmark was run 11 times. The reported figure is the median runtime ratio between
the particular implementation and the baseline effectful implementation (lower is better).
Benchmarks that failed to terminate within a threshold (3 minutes for single solution, 8
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First solution All solutions
Parameter 20 24 28 8 10 12
Naïve − − − 301.80 6468.51 −
Berger 12.02 19.12 27.38 1.96 2.25 3.22
Pruned 3.26 4.15 4.96 1.47 1.45 1.93
Bespoke 0.21 0.23 0.26 0.19 0.16 0.17

Table 1: Runtime of the n-Queens procedures relative to the effectful implementation

minutes for enumerations), are reported as −. The experiments were conducted using, at the
time of writing, latest stock OCaml 5.0.0 with factory settings on an AMD Ryzen 9 5900X
12-core CPU powered workstation running Ubuntu 22.04.

OCaml supports only single-shot continuations out-of-the-box, but the effectful procedure
requires multi-shot continuations to function correctly. Therefore, we used the package
multicont 1.0.0, which provides facilities for programming with multi-shot continuations
in OCaml. Under the hood, the library opaquely performs a copy-on-invoke of a regular
single-shot continuation such that an additional copy of the continuation is available later.
In contrast to OCaml’s continuations, the multi-shot continuations provided by this package
are garbage collected. The package can be installed directly via OPAM or built from source.
The interested reader may visit the following site for more information:

https://github.com/dhil/ocaml-multicont

The complete source code and data for the benchmarks are available at:

https://github.com/dhil/asymptotic-speedup-via-effect-handlers-code-jfp

Queens The classic n-queens problem can be directly cast as a search problem of the
kind considered in Section 5, mildly generalising so as to allow searches over the space
Nn→Nn rather than just Nn→B: a potential solution or ‘point’ corresponds to a vector
(q0, . . . , qn−1) where qi is the row of the unique queen in the ith column. We evaluated
four implementations of generic search, and as a control we also included a bespoke
implementation hand-optimised for the problem. We performed two experiments: finding
the first solution for n∈ {20, 24, 28} and enumerating all solutions for n∈ {8, 10, 12}.

As expected, the naïve implementation performs very poorly indeed. The Berger pro-
cedure is more competitive, and the pruned procedure even more so, but still slower than
the baseline effectful version. Unsurprisingly, the baseline is significantly slower than the
bespoke implementation.

Exact real integration Our second problem involves a more elaborate application of the
same ideas, this time to a ‘search’ over all paths through a tree of infinite depth (though
still finitely branching). This example was one of our main inspirations, and it was by
simplifying and distilling the phenomena arising here that we were led to the formulation of
generic search in the finite setting and to the main results of this paper.

Glossing over several points, the idea is as follows. Let us represent real numbers in the
interval [0, 1] by streams of binary digits, where we think of all possible such streams as

https://github.com/dhil/ocaml-multicont
https://github.com/dhil/asymptotic-speedup-via-effect-handlers-code-jfp
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paths through the full infinite binary tree, and let us represent a continuous mathematical
function f : [0, 1]→ [0, 1] by a function on such streams. Our task is to evaluate the definite
integral

∫ 1
0 f to within any specified error bound ε > 0. Informally, we can achieve this

if for every x∈ [0, 1] we know the value of f (x) to within ε . We may therefore proceed
as follows. First we evaluate f to the required precision at the real 0, represented by the
stream 0, 0, 0, . . .. We will obtain a result v having consumed finitely many digits of the
input stream, say k of them. Since we have not looked at any of the subsequent digits, this
actually tells us not only that |f (0)− v|< ε , but that |f (x)− v|< ε for any x∈ [0, 2−k]. This
gives us a contribution of v.2−k towards our integral. We therefore continue by evaluating
f to the required precision at the right endpoint 2k of this interval, represented by the
stream 0k−1, 1, 0, 0, 0 . . . (where 0k−1 is a sequence of k− 1 zeros). This will return a
result after consuming say k′ digits, giving us the desired information about f (x) for every
x∈ [2−k, 2−k + 2−k′ ]. We continue creeping along the unit interval in this way until we reach
the endpoint 1. (Since the computation of f to any required precision is assumed to succeed
for any input stream, computable or otherwise, it follows by König’s Lemma (König, 1927)
that we will indeed reach 1 after a finite number of steps.) At this point, we have enough
information to return the value of the integral to within ε .

The relation to the concerns of this paper should now be apparent. We are wishing to
implement a general integration operator that performs the above parametrically in any
given f (or more precisely in any given representation of such an f by a function on streams).
In a language without advanced control features, we essentially have no option but to start
the evaluation of f afresh on each new stream: there is no way to take advantage of the fact
that the evaluation on 0, 0, 0, . . . and on 0k−1, 1, 0, 0, 0 . . . will proceed identically up to
the point where the kth input digit is examined. With general effect handlers, however, such
an optimisation is indeed possible, much as we have explained in this paper — the main
difference being that we are now traversing a tree of infinite depth, and we have no bound
in advance on the depth to which we will be required to explore.

For the sake of simplicity, we have here sketched the idea as though reals were represented
by ordinary binary sequences. It is well known, however, that ordinary binary representations
are inadequate for the purpose of exact real computation, and a common alternative (see e.g.
Wiedmer (1980)) is to work instead with streams of signed binary digits −1, 0, 1, meaning
that every real number has multiple representations. This somewhat complicates the details
of how integrals are computed, but does not affect the essential idea.

Our integration benchmarks are adapted from Simpson (1998). We integrate three dif-
ferent functions with varying precision in the interval [0, 1]. For the identity function (Id)
at precision 20 the pruned procedure comfortably beats the effectful procedure, though
the effectful procedure beats the Berger procedure, providing a relative speedup of 1.68×.
For the squaring function the speedups over the Berger procedure are between 7 and 9×,
whereas the pruned procedure remains more competitive as the effectful procedure provides
only a modest speedup of roughly 1.50×. More significant speedups are achieved when
we integrate the logistic map x 7→ 1− 2x2 at a fixed precision of 15. The achieved speedup
generally gets better as we make the function harder to compute by iterating it up to 5 times.
The relative speedup over the Berger procedure is 7− 11×, whereas the speedup over the
pruned procedure is 1.5− 3.5×.
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Id Squaring Logistic
Parameter 20 14 17 20 1 2 3 4 5
Naïve 6.23 17.14 21.72 31.14 20.83 35.43 42.26 − −
Berger 1.68 7.23 7.76 9.34 7.77 11.83 10.71 11.18 11.61
Pruned 0.62 1.39 1.48 1.71 1.48 2.41 2.45 2.95 3.45

Table 2: Runtime of exact real integration procedures relative to the effectful implementation

12 Conclusions and future work

We presented a PCF-inspired language λb, an extension λh with general effect handlers, and a
milder extension λa with affine effect handlers. We proved that λh supports an asymptotically
more efficient implementation of generic search than any possible implementation in λb or
even λa. We observed this effect in practice on several benchmarks. Since λa is powerful
enough to encode features such as exceptions, local state and coroutines, our results strongly
suggest that the speedup we have discussed is unattainable in languages such as Standard
ML, Java and Python.

Our positive result for λh extends to other control operators by appeal to existing results
on interdefinability of handlers and other control operators (Forster et al., 2019; Piróg et al.,
2019). We have also indicated in Section 6.3 how the same speedup may also be obtained
in the presence of a type-and-effect system.

One might object that the efficiency gap we have analysed is of merely theoretical
interest, since an Ω(2n) runtime is already ‘infeasible’. We claim, however, that what we
have presented is an example of a much more pervasive phenomenon, and our generic count
example serves merely as a convenient way to bring this phenomenon into sharp formal
focus. Suppose, for example, that our programming task was not to count all solutions to
P, but to find just one of them. It is informally clear that for many kinds of predicates this
would in practice be a feasible task, and also that we could still gain our factor n speedup
here by working in a language with first-class control. However, such an observation appears
less amenable to a clean mathematical formulation, as the runtimes in question are highly
sensitive to both the particular choice of predicate and the search order employed.

Finally, we have suggested that our gap between λa and λh can be seen as an instance of
a much more general phenomenon, whereby the attainable efficiency for performing some
task may vary according to the expressivity of the programming language. Thus, in the case
of generic counting for n-predicates:

• In λi (a language with iteration but not recursion), one cannot systematically (and
uniformly in n) achieve either ‘false’ pruning or ‘true’ pruning.

• In λb, we may systematically and uniformly achieve ‘false’ pruning but not ‘true’
pruning (Bergercount).

• In λa, we may systematically achieve both ‘false’ and ‘true’ pruning (prunedcount),
but no sharing of computations is possible.

• In λh, pruning and sharing of computations are systematically possible (effcount).

In this paper we have established the last of these gaps with mathematical rigour, whereas the
others having been discussed only informally in Section 7. We believe that using methods
similar to those of this paper, it should be possible to formulate and prove precise statements
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pinning down the other differences, thus giving mathematical substance to the above claims.
This wider programme of examining the language expressivity spectrum through the lens of
algorithmic complexity seems to us worthy of significant further attention.
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A Correctness of the base machine

We now show that the base abstract machine is correct with respect to the operational
semantics, that is, the abstract machine faithfully simulates the operational semantics. Initial
states provide a canonical way to map a computation term onto the abstract machine. A
more interesting question is how to map an arbitrary configuration to a computation term.
Figure 10 describes such a mapping L−M from configurations to terms via a collection
of mutually recursive functions defined on configurations, continuations, computation
terms, value terms, and machine values. The mapping makes use of two operations on
environments, γ , which we define now.

Definition 10. We write dom(γ) for the domain of γ , and γ\{x1, . . . , xn} for the restriction
of environment γ to dom(γ)\{x1, . . . , xn}.

The L−M function enables us to classify the abstract machine reduction rules according
to how they relate to the operational semantics. The rule (M-LET) is administrative in the
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Configurations

L⟨M | γ | σ⟩M= LσM(LMMγ)

Pure continuations
L[]MM = M

L(γ, x, N) :: σMM = LσM(let x←M in LNM(γ\{x}))
Computation terms

LV WMγ = LVMγ LWMγ
Llet ⟨x; y⟩= V in NMγ = let ⟨x; y⟩= LVMγ in LNM(γ\{x, y})

Lcase V {inl x 7→M; inr y 7→N}Mγ = case LVMγ {inl x 7→ LMM(γ\{x});
inr y 7→ LNM(γ\{y})}

Lreturn VMγ = return LVMγ
Llet x←M in NMγ = let x← LMMγ in LNM(γ\{x})

Value terms and values

LxMγ = LvM, if γ(x) = v
LxMγ = x, if x /∈ dom(γ)

LnMγ = n
LλxA.MMγ = λxA.LMM(γ\{x})

Lrec f xA.MMγ = rec f xA.LMM(γ\{f , x})
L⟨⟩Mγ = ⟨⟩

L⟨V, W⟩Mγ = ⟨LVMγ, LWMγ⟩
LinlB VMγ = (inl LVMγ)B

LinrA WMγ = (inr LWMγ)A

LnM = n
L(γ, λxA.M)M = λxA.LMM(γ\{x})

L(γ, rec f xA.M)M = rec f xA.LMM(γ\{f , x})
L⟨⟩M = ⟨⟩

L⟨v; w⟩M = ⟨LvM; LwM⟩
LinlB vM = inlB LvM

LinrA wM = inrA LwM
LσAM = λxA.LσM(return x)

Fig. 10: Mapping from Base Machine Configurations to Terms

sense that L−M is invariant under this rule. This leaves the β -rules (M-APP), (M-SPLIT),
(M-CASE), and (M-RETCONT). Each of these corresponds directly with performing a
reduction in the operational semantics.

Definition 11 (Auxiliary reduction relations). We write −→a for administrative steps
(M-LET) and ≃a for the symmetric closure of −→∗a. We write −→β for β -steps (all other
rules) and =⇒ for a sequence of steps of the form −→∗a−→β .

The following lemma describes how we can simulate each reduction in the operational
semantics by a sequence of administrative steps followed by one β -step in the abstract
machine.

Lemma 4. Suppose M is a computation and C is configuration such that LC M= M, then if
M⇝N there exists C ′ such that C =⇒C ′ and LC ′M= N, or if M ̸⇝ then C ̸=⇒.

Proof By induction on the derivation of M⇝N. ■

The correspondence here is rather strong: there is a one-to-one mapping between⇝ and
=⇒ /≃a (where we write R/S for the quotient of relation R by relation S). The inverse of
the lemma is straightforward as the semantics is deterministic. Notice that Lemma 4 does
not require that M be well-typed. We have chosen here not to perform type-erasure, but the
results can be adapted to semantics in which all type annotations are erased.
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Configurations

L⟨M | γ | κ⟩M= LκM(LMMγ)

Continuations
L[]MM = M

L(σ , χ) :: κMM = LκM(LχM(LσM(M)))
Handler Closures and Definitions

L(γ, H)MM = handle M with LHMγ L{val x 7→M}Mγ = {val x 7→ LMM(γ\{x})}
L{ℓ x r 7→M} ⊎HMγ = {ℓ x r 7→ LMM(γ\{x, r})} ⊎ LHMγ

Computation Terms and Machine Values

Lhandle M with HMγ = handle LMMγ with LHMγ
Ldo ℓ VMγ = do ℓ LVMγ

L(γ, H)DM = λxD.L(γ, H)M(return x)

Fig. 11: Mapping from Handler Machine Configurations to Terms

Theorem 6 (Base simulation). If ⊢M : A and M⇝+ N where N is normal, then ⟨M | /0 |
[]⟩ −→+ C such that LC M= N, or if M ̸⇝ then ⟨M | /0 | []⟩ ̸−→.

Proof By repeated application of Lemma 4. ■

B Correctness of the handler machine

The correctness result for the base machine can mostly be repurposed for the handler
machine as we need only recheck the cases for (M-LET) and (M-RETCONT) and check
the cases for handlers. Figure 11 shows the necessary changes to the L−M function.

Lemma 5. Suppose M is a computation and C is configuration such that LC M= M, then if
M⇝N there exists C ′ such that C =⇒C ′ and LC ′M= N, or if M ̸⇝ then C ̸=⇒.

Proof By induction on the derivation of M⇝N. ■

Theorem 7 (Handler simulation). If ⊢M : A and M⇝+ N such that N is normal, then
⟨M | /0 | κ0⟩ −→+ C such that LC M= N, or M ̸⇝ then ⟨M | /0 | κ0⟩ ̸−→.

Proof By repeated application of Lemma 5. ■
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