
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Asymptotic Improvement with Effect Handlers
Daniel Hillerström

The University of Edinburgh

UK

daniel.hillerstrom@ed.ac.uk

Sam Lindley

The University of Edinburgh and

Imperial College London

UK

sam.lindley@ed.ac.uk

John Longley

The University of Edinburgh

UK

jrl@staffmail.ed.ac.uk

Abstract
As Filinski showed in the 1990s, delimited control operators

can express all monadic effects. Plotkin and Pretnar’s effect

handlers offer a modular form of delimited control providing

a uniform mechanism for concisely implementing features

ranging from async/await to probabilistic programming.

We study the fundamental efficiency of effect handlers.

Specifically, we show that effect handlers enable an asymp-

totic improvement in runtime complexity for a certain class

of programs. We consider the generic search problem and de-

fine a pure PCF-like base language λb and its extension with

effect handlers λh. We show that λh admits an asymptotically

more efficient implementation of generic search than any λb
implementation of generic search.

To our knowledge this result is the first of its kind for

control operators.

1 Introduction
In today’s programming languages we find a wealth of pow-

erful constructs and features — exceptions, higher-order

store, dynamic method dispatch, coroutining, explicit contin-

uations, concurrency features, Lisp-style ‘quote’ and so on

— which may be present or absent in various combinations

in any given language. There are of course many important

pragmatic and stylistic differences between languages, but

here we are concerned with whether languages may differ

more essentially in their expressive power, according to the

selection of features they contain.

One can interpret this question in various ways. For in-

stance, Felleisen [13] considers the question of whether a

language L admits a translation into a sublanguage L ′ in a

way which respects not only the behaviour of programs but

also aspects of their (global or local) syntactic structure. If the

translation of some L-program into L ′ requires a complete

global restructuring, we may say that L ′ is in some way less

expressive than L. In the present paper, however, we have in

mind even more fundamental expressivity differences that

would not be bridged even if whole-program translations

were admitted. These fall under two headings.

1. Computability: Are there operations of type A that are

programmable in L but not expressible at all in L ′?

2. Complexity: Are there operations programmable in

L with some asymptotic runtime bound (e.g. ‘O(n2)’)
that cannot be achieved in L ′?

We may also ask: are there examples of natural, practically
useful operations that manifest such differences? If so, this

might be considered as a significant advantage of L over L ′.

If the ‘operations’ we are asking about are ordinary first-

order functions — that is, both their inputs and outputs are of

ground type (strings, arbitrary-size integers etc.) — then the

situation is easily summarised. At such types, all reasonable

languages give rise to the same class of programmable func-

tions, namely the Church-Turing computable ones. As for

complexity, the runtime of a program is typically analysed

with respect to some cost model for basic instructions (e.g.

one unit of time per array access). Although the realism of

such cost models in the asymptotic limit can be questioned

(see, e.g., [23, Section 2.6]), it is broadly taken as read that

such models are equally applicable whatever programming

language we are working with, and moreover that all re-

spectable languages can represent all algorithms of interest;

thus, one does not expect the best achievable asymptotic

run-time for a typical algorithm (say in number theory or

graph theory) to be sensitive to the choice of programming

language, except perhaps in marginal cases.

The situation changes radically, however, if we consider

higher-order operations: programmable operations whose

inputs may themselves be programmable operations. Here

it turns out that both what is computable and the efficiency

with which it can be computed can be highly sensitive to the

selection of language features present. This is in fact true

more widely for abstract data types, of which higher-order

types can be seen as a special case: a higher-order value will

of course be represented within the machine as ground data,

but a program within the language typically has no access to

this internal representation, and can interact with the value

only by applying it to an argument.

Most of the work in this area to date has focused on com-

putability differences. One of the best known examples is the

parallel if operation which is computable in a language with

parallel evaluation but not in a typical ‘sequential’ program-

ming language [35]. It is also well known that the presence of

control features or local state enables observational distinc-

tions that cannot be made in a purely functional setting: for

instance, there are programs involving ‘call/cc’ that detect

the order in which a (call-by-name) ‘+’ operation evaluates

its arguments [9]. Such operations are ‘non-functional’ in

the sense that their output is not determined solely by the

extension of their input ; however, there are also programs

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

with ‘functional’ behaviour that can be implemented with

control or local state but not without them [28]. More re-

cent results have exhibited differences lower down in the

language expressivity spectrum: for instance, in a purely

functional setting à laHaskell, the expressive power of recur-
sion increases strictly with its type level [30], and there are

natural operations computable by (low-order) recursion but

not by (even high-order) iteration [29]. Much of this territory,

including the mathematical theory of some of the natural

notions of higher-order computability that arise in this way,

is mapped out by Longley and Normann [31].

Relatively few results of this character have so far been

established on the complexity side. Pippenger [33] gives

an example of an ‘online’ operation on infinite sequences

of atomic symbols (essentially a function from streams to

streams) such that the first n output symbols can be produced

within time O(n) if one is working in an ‘impure’ version

of Lisp (in which mutation of ‘cons’ pairs is admitted), but

with a worst-case runtime no better than Ω(n log n) for any
implementation in pure Lisp (without such mutation). This

example was reconsidered by Bird et al. [8] who showed that

the same speedup can be achieved in a pure language by

using lazy evaluation. Jones [20] explores the approach of

manifesting expressivity and efficiency differences between

certain languages by artificially restricting attention to ‘cons-

free’ programs; in this setting, the classes of representable

first-order functions for the various languages are found to

coincide with some well-known complexity classes.

The purpose of the present paper is to give a clear ex-

ample of such an inherent complexity difference higher up

in the expressivity spectrum. Specifically, we consider the

following generic search problem, parametric in n: given a

boolean-valued predicate P on the space Bn of boolean vec-

tors of length n, return the number of such vectors p for

which P(p) = true. We shall consider boolean vectors of any

length to be represented by the type Nat→ Bool; thus, for
each n, we are asking for an implementation of a certain

third-order operation

countn : ((Natn → Bool) → Bool) → Nat

A naive implementation strategy, supported by any reason-

able language, is simply to apply P to each of the 2
n
vectors

in turn. A much less obvious, but still purely ‘functional’,

approach due to Berger [5] achieves the effect of ‘pruned

search’ where the predicate admits this (serving as a warning

that counter-intuitive phenomena can arise in this territory).

Nonetheless, under a mild condition on P (namely that it

must inspect all n components of the given vector before

returning), both these approaches will have a Ω(n2n) run-
time. Moreover, we shall show that in a typical call-by-value

language without advanced control features, one cannot

improve on this: any implementation of countn must nec-

essarily take time Ω(n2n), even when the predicates P are

chosen to be ‘as simple as possible’. On the other hand, if

we extend our language with a feature such as effect han-
dlers (see Section 2 below), it becomes possible to bring the

runtime down to O(2n): an asymptotic gain of a factor of n.
In order to make this efficiency difference stand out as

clearly as possible, we have resorted to some slightly ar-

tificial constraints in the way we set up our scenario. Of

course, even one illustration of this phenomenon suffices

in principle to establish the existence of the efficiency gap

in question; however, it will also be clear from our analysis

that, in spite of the technical restrictions, the phenomenon

we are exhibiting is actually quite general. For instance, if

the problem of counting all solutions to P is replaced by that

of returning the first solution found (if one exists), it will be

clear that an order n speedup can still typically be expected.

The idea behind the speedup is easily explained. Suppose

for example n = 4, and suppose that the predicate P al-

ways inspects the components of its argument in the order

0, 1, 2, 3. A naive implementation of count4 might start by

applying the given P to p0 = (true, true, true, true), and then
to p1 = (true, true, true, false). Clearly there is some dupli-

cation here: the computations of P p0 and P p1 will proceed
identically up to the point where the value of the final com-

ponent is requested. What we would like to do, then, is to

record the state of the computation of P p0 at just this point,
so that we can later resume this computation with false
supplied as the final component value in order to obtain

the value of P p1. (Similarly for all other internal nodes in

the evident binary tree of boolean vectors.) Of course, this

‘backup’ approach would be standardly applied if one were

implementing a bespoke search operation for some particu-
lar choice of P (corresponding, say, to the n-queens problem);

but to apply this idea of resuming previous subcomputations

in the generic setting (that is, uniformly in P) requires some

special language feature such as effect handlers or multi-use

continuations. One could also obviate the need for such a

feature by choosing to present the predicate P in some other

way, but from our present perspective this would be to move

the goalposts: our intention is precisely to show that our

languages differ in an essential way as regards their power to
manipulate data of type (Nat→ Bool) → Bool.

The above idea will already be familiar, at least informally,

to many who have worked with effect handlers or explicit

continuations, and was explicitly presented in a closely re-

lated context by Bauer [1]; but our contribution here is to

formulate and prove a precise mathematical theorem that

pins down the efficiency difference in question. A general

mathematical theory of the expressive power of effect han-

dlers would be perhaps best articulated within the frame-

work of game semantics; since in the present paper our focus

is on one specific example of the difference, we shall work

concretely and operationally with the languages themselves.

In the first instance, we formulate our results as a compari-

son between a purely functional base language (a version of

call-by-value PCF [35]) and an extension of this with effect

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

handlers; we then easily observe that our results are unaf-

fected if the base language is augmented with other features

such as local mutable store. As regards the runtime estimates,

we work with a CEK-style abstract machine model for our

languages which, we claim, offers a realistic model of pro-

gram execution time for typical real-world implementations.

The rest of the paper is structured as follows.

• Section 2 provides an introduction to effect handlers

as a programming abstraction.

• Section 3 presents a PCF-like language λb and its ex-

tension λh with effect handlers.

• Section 4 defines abstract machines for λb and λh.
• Section 5 formally states and proves the complexity of

generic search in λb (Ω(n2n)) and λh (O(2n)).
• Section 6 outlines how the result scales to extensions

of the base language with features such as state.

• Section 7 empirically evaluates implementations of

generic search based on λb and λh in Standard ML.

• Section 8 concludes.

The languages λb and λh are rather minimal variants of pre-

vious work — we only include the machinery needed for

illustrating the generic search efficiency phenomenon. Full

proofs of our main complexity results are available in the

appendices of the anonymised supplementary material.

2 Effect Handlers Primer
Effect handlers were originally studied as a theoretical means

to provide a semantics for exception handling in the setting

of algebraic effects [36, 37]. Subsequently they have emerged

as a practical programming abstraction for modular effectful

programming [3, 11, 18, 21, 22, 24, 27]. In this section we

give a short introduction to effect handlers. For a thorough

introduction to programming with effect handlers, we rec-

ommend the tutorial by Pretnar [38], and as an introduction

to the mathematical foundations of handlers, we refer the

reader to the founding paper by Plotkin and Pretnar [37] and

the excellent tutorial paper by Bauer [2].

Viewed through the lens of universal algebra, an algebraic

effect is given by a signature Σ of finitary operation symbols
defined over some nonempty carrier set A, along with an

equational theory that describes the properties of the opera-

tions [36]. An example of an algebraic effect is nondetermin-
ism, whose signature consists of a single nondeterministic

choice operation: Σ := {Branch : 1→ Bool}. The operation
takes a single parameter of type unit and ultimately pro-

duces a boolean value. The pragmatic programmatic view of

algebraic effects differs from the original development as no

implementation accounts for equations over operations yet.

As an introductory programmatic example, we will show-

case a use of the operation Branch by modelling a coin toss.

Suppose we have a data type Toss := Heads | Tails, then

in our programming notation (introduced formally in Sec-

tion 3.2) we may implement a coin toss as follows.

toss : ⟨⟩ → Toss
toss ⟨⟩ = if do Branch ⟨⟩ then inl Heads else inr Tails

From the type signature it is clear that the computation re-

turns a value of type Toss. It is not clear from the signature

of toss whether it performs an effect. From looking at the

definition, it evidently performs the operation Branch with

argument ⟨⟩ using the do-invocation form. The result of the

operation determines whether the computation returns ei-

therHeads or Tails (with the appropriate injections). Systems

such as Frank [27], Helium [7], Koka [24], and Links [18]

include type-and-effect systems which track the use of ef-

fectful operations. Whilst current iterations of systems such

as Eff [3] and Multicore OCaml [11] elect not to include an

effect system. Our language is closer to the latter two.

We may, in the style of Lindley [26], view an effectful

computation as a tree, where the interior nodes correspond

to operation invocations and the leaves correspond to return

values. The computation tree for toss is as follows.

Branch

Heads

true

Tails

false

It models interaction with the environment. The operation

Branch can be viewed as a query for which the response is
either true or false. The response is provided by an effect

handler. As an example consider the following handler which

enumerates the possible outcomes of a coin toss.

handle toss ⟨⟩ with
val x 7→ [x]
Branch ⟨⟩ r 7→ r true ++ r false

The handle-construct generalises the exceptional syntax

of Benton and Kennedy [4]. A handler has a success clause
and an operation clause. The success clause determines how

to interpret the return value of toss. It lifts the return value

into a singleton list. The operation clause determines how to

interpret occurrences of Branch in toss. It provides access to
the argument of Branch (which is unit) and its resumption, r .
The resumption is a first-class delimited continuation which

captures the remainder of the toss computation from the

invocation of Branch up to its nearest enclosing handler.

Applying r to true resumes evaluation of toss via the

true branch, returning Heads and causing the success clause
of the handler to be invoked; thus the result of r true is

[inl Heads]. Evaluation continues in the operation clause,

meaning that r is applied again, but this time to false, which
causes evaluation to resume in toss via the false branch. By
the same reasoning, the value of r false is [inr Tails], which
is concatenated with the result of the true branch; hence the
handler ultimately returns [inl Heads, inr Tails].

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

3 Calculi
In this section, we present our base language λb and its

extension with effect handlers λh.

3.1 Base Calculus
The base calculus λb is a fine-grain call-by-value [25] vari-

ation of PCF [35]. Fine-grain call-by-value is similar to A-

normal form [16] in that every intermediate computation is

named, but unlike A-normal form is closed under reduction.

The types of λb are given by the following grammar.

A,B,C,D ::= Nat | 1 | A→ B | A × B | A + B

The ground types are Nat and 1 which classify natural num-

ber values and the unit value, respectively.Wewrite groundA
to assert that type A is a ground type. The function type

A → B represents functions that map values of type A to

values of type B. The binary product type A × B represents

a pair of values whose first and second components have

types A and B respectively. The sum type A × B represents

tagged values of either type A or B. Type environments Γ
map term variables to their types.

We let n range over natural numbers and c range over

primitive operations on natural numbers (+,−,=). We gen-

erally use lowercase letters x, y, z and more to denote term

variables. By convention we use f , g, and h for variables of

function type, i and j for variables of typeNat, and r and k to
denote resumptions and continuations, with the exception

that we will use uppercase P to denote predicates.

The typing rules are given in Figure 1. We require two

typing judgements: one for values and the other for compu-

tations. The judgement Γ ⊢ □ : A states that a □-term has

type A under type environment Γ, where □ is either a value

term (V) or a computation term (M). The constants have the

following types.

{(+), (−)} : ⟨Nat,Nat⟩ → Nat (=) : ⟨Nat,Nat⟩ → Bool

Value terms comprise variables (x), the unit value (⟨⟩), nat-
ural number literals (n), primitive constants (c), lambda ab-

straction (λxA.M), recursion (rec f A x .M), pairs (⟨V ,W ⟩),
left ((inl V)B) and right ((inr W)A) injections. We assume

an efficient representation of naturals (e.g. naturals occupy

a machine word) such that constants (c ∈ {+,−,=}) have
efficient realisations ⌜c⌝. All elimination forms are computa-

tion terms. Abstraction is eliminated using application (V W).

The product eliminator (let ⟨x, y⟩ = V in N) splits a pair
V into its constituents and binds them to x and y, respec-
tively. Sums are eliminated by a case split (case V {inl x 7→
M; inr y 7→ N }). A trivial computation (return V) returns
value V . The sequencing expression (let x ← M in N)
evaluates M and binds the result value to x in N .

For convenience we often write code in direct-style assum-

ing the standard left-to-right call-by-value elaboration into

fine-grain call-by-value [16]. For example, assuming f , g, h
are functions, and a is a bound variable, then the expression

(f (h a) + g ⟨⟩) is syntactic sugar for:

let x ← h a in let y ← f x in let z ← g ⟨⟩ in y + z

We use the standard encoding of booleans as sums:

Bool := 1 + 1 true := inl ⟨⟩ false := inr ⟨⟩

if V then M else N := case V {inl ⟨⟩ 7→ M; inr ⟨⟩ 7→ N }

Wemake use of standard syntactic sugar for patternmatch-

ing. For instance, for suspended computations we write

λ⟨⟩.M := λx1.M, where x < FV (M)

and more generally if the binder has a type other than 1,

then we write

λ_A.M := λxA.M, where x < FV (M)

We elide type annotations when clear from context.

We give a small-step operational semantics for λbwith
evaluation contexts in the style of Felleisen [12].

(λxA.M)V { M[V/x]
(rec f A x .M)V { M[(rec f A x .M)/f ,V/x]

c V { return (⌜c⌝ (V))
let ⟨x; y⟩ = ⟨V ;W ⟩ in N { N [V/x,W/y]

case (inlV)B {inl x 7→ M;

inr y 7→ N }
{ M[V/x]

case (inrV)A {inl x 7→ M;

inr y 7→ N }
{ N [V/y]

let x ← return V in N { N [V/x]

E[M] { E[N], if M { N

Evaluation contexts E ::= [] | let x ← E in N

We write M[V/x] for M with V substituted for x. The re-
duction relation { is defined on computation terms. The

statement M { N reads: term M reduces to term N in one

step. We write R+ for the transitive closure of relation R.

3.2 Handler Calculus
We now define λh as an extension of λb. First we define no-
tation for operation symbols, signatures, and handler types.

Operation symbols ℓ ∈ L

Signatures Σ ::= · | {ℓ : A→ B} ∪ Σ
Handler types F ::= C ⇒ D

We assume a countably infinite set of operation symbols L.

An effect signature Σ is a map from operation symbols to

their types, thus we assume that each operation symbol in a

signature is distinct. An operation type A→ B denotes an

operation that takes an argument of type A and returns a

result of type B.Wewrite dom(Σ) ⊆ L for the set of operation

symbols in a signature Σ. An effect handler type C ⇒ D
classifies effect handlers that transform computations of type

C into computations of type D. Following Pretnar [38], we
assume a global signature for every program.

The typing rules for λh are those of λb (Figure 1) plus

three additional rules for operations, handling, and handlers

given in Figure 2. The T-Op rule ensures that an operation

invocation is only well-typed if the operation ℓ appears in the
4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Values
T-Var

x : A ∈ Γ

Γ ⊢ x : A

T-Unit

Γ ⊢ ⟨⟩ : 1

T-Nat

n ∈ N

Γ ⊢ n : Nat

T-Const

c : A→ B

Γ ⊢ c : A→ B

T-Lam

Γ, x : A ⊢ M : C

Γ ⊢ λxA.M : A→ C

T-Rec

Γ, f : A→ C, x : A ⊢ M : C

Γ ⊢ rec f A→C x .M : A→ C

T-Prod

Γ ⊢ V : A
Γ ⊢ W : B

Γ ⊢ ⟨V ,W ⟩ : A × B

T-Inl

Γ ⊢ V : A

Γ ⊢ (inlV)B : A + B

T-Inr

Γ ⊢ W : B

Γ ⊢ (inrW)A : A + B

Computations
T-App

Γ ⊢ V : A→ B
Γ ⊢ W : A

Γ ⊢ V W : B

T-Split

Γ ⊢ V : A × B
Γ, x : A, y : B ⊢ N : C

Γ ⊢ let ⟨x, y⟩ = V in N : C

T-Case

Γ ⊢ V : A + B Γ, x : A ⊢ M : C Γ, y : B ⊢ N : C

Γ ⊢ case V {inl x 7→ M; inr y 7→ N } : C

T-Return

Γ ⊢ V : A

Γ ⊢ return V : A

T-Let

Γ ⊢ M : A Γ, x : A ⊢ N : C

Γ ⊢ let x ← M in N : C

Figure 1. Typing Rules for λb

Computations
T-Do

(ℓ : A→ B) ∈ Σ Γ ⊢ V : A

Γ ⊢ do ℓ V : B

T-Handle

Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ handle M with H : D

Handlers
T-Handler

Hval = {val x 7→ M} [H ℓ = {ℓ pℓ rℓ 7→ Nℓ}]ℓ∈dom(Σ)
[Γ, pℓ : Aℓ , rℓ : Bℓ → D ⊢ Nℓ : D](ℓ:Aℓ→Bℓ)∈Σ

Γ, x : C ⊢ M : D

Γ ⊢ H : C ⇒ D

Figure 2. Additional Typing Rules for λh

effect signature Σ and the argument type Amatches the type

of the provided argument V . The result type B determines the

type of the invocation. The T-Handle rule is straightforward.

The T-Handler rule ensures that the bodies of the success

clause and the operation clauses all have the output type

D. The type of x in the value clause must match the input

type C. The type of the parameter pℓ (Aℓ) and resumption

rℓ (Bℓ → D) in the operation clause H ℓ
is determined by the

signature for ℓ. The return type of rℓ is D, as the body of

the resumption will itself be handled by H . We write H ℓ
and

Hval
for projecting success and operation clauses.

H ℓ
:= {ℓ p r 7→ M}, where {ℓ p r 7→ M} ∈ H

Hval
:= {val x 7→ M}, where {val x 7→ M} ∈ H

We extend the operational semantics to λh.

handle (return V) with H { N [V/x],
where Hval = {val x 7→ N }

handle E[do ℓ V] with H {
N [V/p, λy.handle E[return y] with H/r],

where H ℓ = {ℓ p r 7→ N }

H[M] { H[N], if M { N

Handler contexts H ::= [] | handle H with H
| let x ←H in N

The first rule invokes the success clause. The second rule

handles an operation via the corresponding operation clause.

The third rule replaces the corresponding lifting rule for λb.
Rather than augmenting evaluation contexts from λb, we
introduce handler contexts. The separation between pure

evaluation contexts E and handler contextsH guarantees

the second rule is deterministic, as otherwise it could pick an

arbitrary handler in scope. With this separation, the second

rule always picks the innermost handler.

We now characterise normal forms and state the standard

type soundness property of λh.

Definition 3.1 (Computation normal forms). We say that a

computation term N is normal with respect to ℓ ∈ Σ, if N is

either of the form return V , or E[do ℓW].

Theorem 3.2 (Type Soundness). If ⊢ M : C, then either there
exists ⊢ N : C such that M {+ N and N is normal, or M
diverges.

4 Abstract Machine Semantics
Thus far we have introduced the base calculus λb and its

extension with effect handlers λh. For each calculus we have

given a small-step operational semantics which uses a substi-

tution model for evaluation. Whilst this model is semanti-

cally pleasing, it falls short of providing a realistic account of

practical computation as substitution is an expensive opera-

tion. We now develop a more practical model of computation

based on an abstract machine semantics.

4.1 Base Machine
We choose a CEK-style abstract machine semantics [14] for

λbbased on that of Hillerström and Lindley [18]. The CEK

machine operates on configurations which are triples of the

form ⟨M | γ | σ ⟩. The first component contains the com-

putation currently being evaluated. The second component

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

contains the environment γ which binds free variables. The

third component contains the continuation which instructs

the machine how to proceed once evaluation of the current

computation is complete. The syntax of abstract machine

states is as follows.

Configurations C ∈ Conf ::= ⟨M | γ | σ ⟩
Environments γ ∈ Env ::= ∅ | γ [x 7→ v]
Machine values v,w ∈ Mval ::= x | n | c | ⟨⟩ | ⟨v,w⟩

| (γ , λxA.M) | (γ , rec f xA.M)
| (inl v)B | (inrw)A

Continuations σ ∈ PureCont ::= [] | (γ , x,N) :: σ

Values consist of function closures, constants, pairs, and

left or right tagged values. A continuation is a stack of con-

tinuation frames. A continuation frame (γ , x,N) closes a
let-binding let x ← [] in N over environment γ . We write

[] for an empty continuation and ϕ :: σ for the result of

pushing the frame ϕ onto σ . We use pattern matching to

deconstruct continuations.

The abstract machine semantics is given in Figure 3. The

transition function is given by the −→ relation, which also

depends on an interpretation function J−K for value terms

and machine values. The machine is initialised by placing a

term in a configuration alongside the empty environment (∅)

and identity continuation ([]). The rules (M-App), (M-Rec),

(M-Const), (M-Split), (M-CaseL), and (M-CaseR) eliminate

values. The (M-Let) rule extends the current continuation

with let bindings. The (M-RetCont) rule binds a returned

value if there is a pure continuation in the current contin-

uation frame. Given an input of a well-typed closed com-

putation term ⊢ M : A, the machine will either diverge or

return a value of type A. A final state is given by a config-

uration of the form ⟨return V | γ | []⟩ in which case the

final return value is given by the denotation JV Kγ of V under

environment γ . We now make the correspondence between

operational semantics and abstract machine more precise.

Correctness The abstract machine faithfully simulates the

operational semantics; most transitions correspond directly

to β-reductions, but theM-Let-rule performs an administra-

tive step to bring the computationM into evaluation position.

We define an extension of the transition function −→ to cap-

ture administrative steps.

Definition 4.1 (Auxiliary reduction relations). We write

−→a for administrative steps, −→β for β-steps, and =⇒ for

a sequence of steps of the form −→∗a−→β .

Theorem 4.2. There is a one-to-one mapping between reduc-
tion relation{ and transition function =⇒.

The proof is by induction on M { N , relying on an

inverse map L−M from configurations to terms [18].

4.2 Handler Machine
We now enrich the λb machine to a λh machine. To support

handlers we extend the syntax as follows.

Configurations C ∈ Conf ::= ⟨M | γ | κ⟩
Continuations κ ∈ Cont ::= [] | (σ , χ) :: κ
Handler closures χ ∈ HClo ::= (γ ,H)
Machine values v,w ∈ Mval ::= · · · | χ

The notion of configurations changes slightly as the continu-

ation component is now occupied by a generalised continua-

tionκ ∈ Cont [18], meaning amachine continuation is now a

list of pairs containing a pure continuation (as in the base ma-

chine) and a handler closure (χ). A handler closure consists

of an environment and a handler definition, where the former

binds the free variables that occur in the latter. The identity

continuation is an empty pure continuation paired with the

identity handler closure, i.e. κ0 := [([], (∅, {val x 7→ x}))].
The machine values are augmented to contain handler clo-

sures as an operation invocation causes the topmost handler

closure of the machine continuation to be reified (and bound

to the resumption parameter in the operation clause).

The handler machine adds transition rules for handlers,

and modifies (M-Let) and (M-RetCont) from the base ma-

chine to account for the richer continuation structure. Fig-

ure 4 depicts the new andmodified rules. The rule (M-Handle)

pushes a the handler closure along with an empty pure

continuation onto the continuation stack. The (M-Let) and

(M-RetCont) are dual rules, as the former grows the pure

continuation of the topmost continuation frame, and the

latter shrinks the pure continuation. If the pure continua-

tion is empty, then the (M-RetHandler) rule applies, which

transfers control to the success clause of the current handler.

If an operation is invoked, then the (M-Handle-Op) rule

transfers control to the corresponding operation clause on

the topmost handler and during the process it reifies the han-

dler closure. Finally, the (M-Resume) rule applies a reified

handler closure, by pushing it onto the continuation stack.

The handler machine has two possible final states: either it

yields a value or it gets stuck on an unhandled operation.

Correctness Theorem 4.2 can mostly be repurposed for

the handler machine as we need only recheck the cases for

(M-Let) and (M-RetCont) and check the cases for handlers.

4.3 Realisability and Asymptotic Complexity
The machine structures are readily realisable using standard

persistent functional data structures. The pure and gener-

alised continuations can be implemented using lists, which

makes their augmentation operation (_ :: _) have time com-

plexity O(1). This also holds true for pure continuations on

the handler machine as augmenting the current pure contin-

uation only requires reaching under the topmost handler clo-

sure. Environments, γ , can be realised using a map, making

the complexity of extension and lookup be O(log |γ |) [32].

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Transition function
M-App ⟨V W | γ | σ ⟩ −→ ⟨M | γ ′[x 7→ JW Kγ] | σ ⟩, if JV Kγ = (γ ′, λxA.M)
M-Rec ⟨V W | γ | σ ⟩ −→ ⟨M | γ ′[f 7→ (γ ′, rec f x .M), x 7→ JW Kγ] | σ ⟩, if JV Kγ = (γ ′, rec f xA.M)
M-Const ⟨V W | γ | σ ⟩ −→ ⟨return (⌜c⌝ (JV Kγ)) | γ | σ ⟩, if JV Kγ = c
M-Split ⟨let ⟨x, y⟩ = V in N | γ | σ ⟩ −→ ⟨N | γ [x 7→ v, y 7→ w] | σ ⟩, if JV Kγ = ⟨v;w⟩
M-CaseL ⟨case V {inl x 7→ M; inr y 7→ N } | γ | σ ⟩ −→ ⟨M | γ [x 7→ v] | σ ⟩, if JV Kγ = inl v
M-CaseR ⟨case V {inl x 7→ M; inr y 7→ N } | γ | σ ⟩ −→ ⟨N | γ [y 7→ v] | σ ⟩, if JV Kγ = inr v
M-Let ⟨let x ← M in N | γ | σ ⟩ −→ ⟨M | γ | (γ , x,N) :: σ ⟩
M-RetCont ⟨return V | γ | (γ ′, x,N) :: σ ⟩ −→ ⟨N | γ ′[x 7→ JV Kγ] | σ ⟩

Value interpretation

JxKγ = γ (x)
J⟨⟩Kγ = ⟨⟩

JnKγ = n
JcKγ = c

JλxA.MKγ = (γ , λxA.M)
Jrec f xA.MKγ = (γ , rec f xA.M)

J⟨V ;W ⟩Kγ = ⟨JV Kγ ; JW Kγ ⟩ J(inlV)BKγ = (inl JV Kγ)B

J(inrV)AKγ = (inr JV Kγ)A

Figure 3. Abstract Machine Semantics for λb

Transition function
M-Resume ⟨V W | γ | κ⟩ −→ ⟨return W | γ | (σ , χ) :: κ⟩, if JV Kγ = (σ , χ)A

M-Let ⟨let x ← M in N | γ | (σ , χ) :: κ⟩ −→ ⟨M | γ | ((γ , x,N) :: σ , χ) :: κ⟩
M-RetCont ⟨return V | γ | ((γ ′, x,N) :: σ , χ) :: κ⟩ −→ ⟨N | γ ′[x 7→ JV Kγ] | (σ , χ) :: κ⟩
M-Handle ⟨handle M with H | γ | κ⟩ −→ ⟨M | γ | ([], (γ ,H)) :: κ⟩
M-RetHandler ⟨return V | γ | ([], (γ ′,H)) :: κ⟩ −→ ⟨M | γ ′[x 7→ JV Kγ] | κ⟩, if Hval = {val x 7→ M}
M-Handle-Op ⟨do ℓ V | γ | (σ , (γ ′,H)) :: κ⟩ −→ ⟨M | γ ′[p 7→ JV Kγ , r 7→ (σ , (γ ′,H))] | κ⟩,

if ℓ : A→ B ∈ Σ and H ℓ = {ℓ p r 7→ M}

Figure 4. Abstract Machine Semantics for λh

The worst-case time complexity of the machine transi-

tion relation −→ is exhibited by rules which involve op-

erations on the environment, since any other operation is

constant time, hence the worst-time complexity of a transi-

tion is O(log |γ |). The value interpretation function J−Kγ is

defined structurally on values. Its worst-time complexity is

exhibited by a nesting of pairs of variables J⟨x1, . . . , xn⟩Kγ
which has complexity O(n log |γ |).

Continuation copying On the handler machine the top-

most continuation frame can be copied in constant time

due to the persistent runtime and the layout of machine

continuation. An alternative design would be to make the

runtime non-persistent in which case copying a continuation

frame ((σ , (γ , _)) :: _) would be a O(|σ | + |γ |) time operation.

5 Efficient Generic Search
We now come to the crux of the paper. In this section we

prove that λh accommodates some programmable operations

with an asymptotic runtime bound that cannot be achieved

in λb. Since addition of effect handlers is the only difference

between the two languages, we obtain as a corollary that

a PCF-like programming language with effect handlers ex-

hibits fundamentally more efficient programs than a pure

PCF programming language. To obtain this result it suffices

to find one efficient program in λh and show that no equiv-
alent program in λb can achieve the same asymptotic com-

plexity: we take generic search.

Generic search is a modular search procedure that finds

solutions to a given search problem P . Generic search is ag-

nostic to the specific instantiation of P , and as a result is

applicable across a wide spectrum of domains. A variety of

problems can be cast as instances of generic search; classic ex-

amples include solving Sudoku puzzles and n-Queens, whilst
more esoteric examples include problems from game theory,

graph theory, and exact real number integration [10, 39].

To simplify the presentation, we compute the number

of solutions (generic count), rather than materialising all

solutions (generic search). With little extra effort one can

tweak the development to compute exact solutions.

Informally, a generic count program takes as input a pred-

icate and returns the number of times the predicate yields

true. A predicate returns a boolean value which signifies

whether its input satisfies the predicate. As input a predicate

takes a bit vector of length n > 0, which we represent as

a first-order function Nat → Bool. Ultimately we ask for

implementations of a program, count, whose type is

countn : ((Natn → Bool) → Bool) → Nat

where Natn admits elements of the set Nn := {0, . . . , n − 1}.
We often omit n indexes when clear from context; in particu-

lar they do not appear explicitly in the types of our programs

as our formalism does not support dependent types.

Before giving the necessary formal machinery to state and

prove the result, we first introduce the concepts informally.

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

5.1 Predicates and Points
Higher-order functions are the key to our modular formula-

tion of generic search. We define a predicate of size n as a

higher-order function which acts on points

Predicaten := Pointn → Bool

where n is a natural number and a point is a first-order

function taking bounded natural numbers to boolean values:

Pointn := Natn → Bool

Intuitively, a point implements a vector of boolean values

where the natural number argument serves as an index into

the vector. A point need not be a total function; indeed points

we concern ourselves with are typically partial.

Examples Let us consider some simple examples of pred-

icates and points. As a first example consider the constant

point, ptrue := λ_.true. A slightly more interesting point is

p2 := λi.if i = 0 then true else if i = 1 then false else ⊥ i

where ⊥ := rec f i.f i is the always-diverging point.
Now let us move onto some example predicates. We can

give a whole family of constant true predicates. For example

tt0 returns true irrespective of its point.

tt0 := λp.true

Similarly we can define a variation, tt2, which inspects two

components of its point, but nevertheless returns true.

tt2 := λp.p 1; p 0; true

This predicate is slightly more interesting than tt0 as it is

defined only for points defined onNatn for n ≥ 2. A predicate

may inspect the same component of its point more than once

red1 := λp.p 0; p 0

thus performing redundant work. Another class of predicates

are divergent predicates such as

div1 := rec div p.if p 0 then div p else false

which diverges whenever the 0-th index of the point yields

true. Thus both div1 ptrue and div1 p2 never terminate. Finally,

let us consider a productive predicate which determines

whether a point contains an odd number of true components.

oddn := λp.fold ⊗ false (map p [0, . . . , n − 1])

where fold and map are the standard combinators on lists,

and ⊗ is the exclusive-or function. This predicate is only well-

defined for n > 0. Applying odd2 to p2 yields true, whereas
applying it to ptrue yields false.

Predicate Models In essence a predicate is a decision pro-

cedure, which participates in a ‘dialogue’ with a supplied

point p : Pointn. The predicate may query (i.e. invoke) the

components of p, and p then responds (i.e. returns). Ultimately

this dialogue may answer whether the point satisfies the

predicate. We can model the behaviour of a predicate as an

unrooted binary decision tree characterising the predicate’s

interaction with p, where each interior node is labelled with

a query ?i (for i ∈ Nn) whose the left subtree corresponds

!true

(a) tt0

?0

?0

..
.

!false

!false

(b) div1

?0

?1

!false !true

?1

!true !false

(c) odd2

Figure 5. Example Decision Tree Models

to p i being true and the right subtree to p i being false, and

each leaf is labelled with an answer !true or !false according
to whether p satisfies the predicate. The trees are unrooted to
account for the bit of computation that occurs in between the

application of a predicate to p and the first query or answer.

Figure 5 depicts models of some of the example predicates

given above. The model of tt0 is simply an unrooted leaf

(Figure 5a). The model of div1 is an infinite left-branching

tree (Figure 5b). The model of odd2 is a complete binary

tree (Figure 5c). A further example is the unconditionally

divergent predicate div := rec f p.f p whose model is empty.

Restrictions To obtain a meaningful complexity result, we

must constrain the predicates of interest. At one extreme,

counting the size of a divergent predicate like div0 is mean-

ingless. At the other extreme, a constant predicate like tt0

exhibits no interesting computational characteristics; other

constant predicates like tt2 inspect their provided point. Pred-

icates like red1 perform redundant work. Such redundancy

can be eliminated via insertion of a local let binding.

Thus we restrict attention to predicates that for n > 0

1. terminate when applied to any point p; and
2. inspect each bit 0 < i < n of p exactly once.

Of the examples so far, the ones satisfying the conditions are

tt2 and oddn. Predicates satisfying 1 and 2 are exactly those

whose models form complete binary trees (as in Figure 5c),

which we call n-standard. We provide a rigorous definition

of n-standard predicates in Section 5.3. To satisfy 1, we also

require that points terminate on their defined domain Natn.
We call a point that is defined on 0 < i < n an n-point.

5.2 Effectful Generic Counting
Having introduced predicates and points informally, we

move onto presenting our effectful implementation of count.
Our implementation is a variation of the example handler

for non-deterministic computation that we gave in Section 2.

The main idea is to implement points as non-deterministic

computations using the Branch operation such that the han-

dler may respond to every query twice by invoking the pro-

vided resumption with true and subsequently false. The key
insight is that the resumption restarts computation at the

invocation site of Branch, which means that prior computa-

tion need not be repeated. In other words, the resumption

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

ensures that common bits of computations prior to any query

are shared between both branches.

We fix the effect signature Σ := {Branch : 1 → Bool}.
The algorithm is then expressed as follows.

effcount : ((Nat→ Bool) → Bool) → Nat
effcount P :=

handle P (λ_.do Branch ⟨⟩) with
val b 7→ if b then return 1 else return 0

Branch ⟨⟩ r 7→ let xtrue ← r true in
let xfalse ← r false in xtrue + xfalse

The handler applies predicate P to a single point defined

using Branch. The boolean return value is interpreted as a

single solution, whilst Branch is interpreted by alternately

supplying true and false to the resumption and summing the

results. A curious detail about effcount is that it works for
all n-standard predicates without having to know the exact

value of n. This is because the point (λ_.do Branch ⟨⟩) rep-
resents the superposition of all possible points. The sharing

enabled by the use of the resumption is exactly the ‘magic’

we need to make it possible to implement generic counting

more efficiently in λh than in λb.

5.3 Predicates, Points, and their Models, Formally
Wenow formalise the notions of n-standard predicates, points,
and their models. We formalise the concepts using the opera-

tional semantics and abstract machine for the base language

λb. The reason being that it makes little sense to compare the

runtime complexity of predicates which makes use effectful

operations as they cannot be run on the base machine.

We begin by formalising the decision tree model of pred-

icates. We first introduce the label set, Lab, consisting of

queries and answers.

Notation. We write bs ⊏ bs′ to mean that list bs is a prefix
of list bs′.

Definition 5.1 (label set). The label set Lab consists of queries
parameterised by a natural number and answers parame-

terised by a boolean.

Lab := {?n | n ∈ N} ∪ {!true, !false}

We model a decision tree as a partial function from lists of

booleans to labels; each boolean list specifies a cursor into

the tree as a path from the root of the tree.

Definition 5.2 ((untimed) decision tree). A decision tree is

a partial function t : B∗ ⇀ Lab from lists of booleans to

node labels with the following properties:

• The domain of t, dom(t), is prefix closed.
• If t(bs) = !b then t(bs′) is undefined for all bs′ ⊐ bs. In
other words answer nodes are always leaves.

Timed decision trees are decorated with timing data that

records the number of machine steps.

Definition 5.3 (timed decision tree). A timed decision tree

is a partial function t : B∗ ⇀ Lab × Nat such that its first

projection bs 7→ t(bs).1 is a decision tree. We write labs(t)
for the first projection (bs 7→ t(bs).1) and steps(t) for the
second projection (bs 7→ t(bs).2) of a timed decision tree.

We now relate predicates to decision trees by way of an

interpretation of configurations as decision trees.

Notation. We write a ≃ b for Kleene equality: either both a
and b are undefined or both are defined and a = b.

Definition 5.4. The timed decision tree of a configuration

is defined by the following equations

T(⟨return true | γ | []⟩) [] = (!true, 0)
T (⟨return false | γ | []⟩) [] = (!false, 0)

T (⟨p V | γ | σ ⟩) [] = (?JV Kγ , 0)

T (⟨p V | γ | σ ⟩) (b :: bs) ≃ T (⟨return b | γ | σ ⟩) bs
T(⟨M | γ | σ ⟩) bs ≃ I(T (⟨M ′ | γ ′ | σ ′⟩) bs),

if ⟨M | γ | σ ⟩ −→ ⟨M ′ | γ ′ | σ ′⟩

whereI(ℓ, s) = (ℓ, s+1) and p is a distinguished free variable
such that in all of the above equations γ (p) = γ ′(p) = p. The
decision tree of a computation term is obtained by placing

it in the initial configuration, i.e. T(M) := T(⟨M, ∅[p 7→
p],κ0⟩). The decision tree of a predicate P is T(P p). Since p
is a parametric variable, we shall omit p and simply write

T(P) to mean T(P p).

We can define a construction procedure,U, for untimed

decision trees using T as follows:U(P) := bs 7→ T (P)(bs).1.

Definition 5.5 (n-standard trees and n-standard predicates).
For any n > 0 a decision tree t is said to be n-standard if

• The domain of t consists of all the lists whose length
is at most n, i.e., dom(t) = {bs : B∗ | |bs | ≤ n}.
• Every leaf node in t is an answer node, i.e., for all bs ∈
dom(t) if |bs | = n then t(bs) = !b, for some b ∈ B.
• There are no repeated queries along any path in t: for
all bs, bs′ ∈ dom(t), j ∈ N, if bs ⊑ bs′ and t(bs) =
t(bs′) = ?j then bs = bs′.

A timed decision tree t is n-standard if its underlying untimed

decision tree (bs 7→ t(bs).1) is. A predicate P is said to be

n-standard if its decision tree T(P) is an n-standard tree.

As alluded to in Section 5.1 n-standard decision tree mod-

els are exactly those that form a complete binary tree such

that each path contains no repeated queries. The third condi-

tion in the definition requires only that there are no repeated

queries along any path in the model; it does not impose a

particular ordering on those queries.

We now move onto formalising points. Our model of

points is only used for extensional reasoning about pro-

grams in the λb-language as we can reason intensionally

about the single point used by effcount in the λh-language.
As remarked in Section 5.1, points may in general be partial,

however, the points that we shall consider all have the prop-

erty, that they terminate whenever applied to an element of

their defined domain (Natn for some n > 0).

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Notation. We write L−M : N → Nat for the injection of

natural numbers into value terms and NJ−K : Nat→ N for

its inverse. Similarly, we write BJ−K : Bool → B for the

denotation function for boolean value terms.

Definition 5.6 (n-point). For any n > 0 a closed value p :

Pointn is said to be an n-point if

∀i ∈ Nn.p LiM {∗ return W .

Semantically, we can think of any n-point as a total first-
order function of type Nn → B. In fact, we shall take this

function type to be the model of n-points. Since an n-point
terminates on its defined domain, we can easily compute a

model of it using the operational semantics. Definition 5.7

provides a procedure for computing the model of any n-point.

Definition 5.7. The denotation of an n-point p is the reali-

sation of its operational behaviour

PJ−K : (Natn → Bool) → (Nn → B)
PJpK := j ∈ Nn 7→ BJpLjMK

Definition 5.8. Any two n-points p0 and p1 are distinct if
their denotations differ, i.e. ∃j ∈ Nn.PJp0K j , PJp1K j.

5.4 Specification of Generic Counting
We now formally define generic counting.

Definition 5.9. A counting function is a partial function of

type B∗ ⇀ N.

As with the decision tree functions, the list argument to a

counting function serves as a cursor into the model of the

predicate. However, in in this case, the function computes

the sum of the true answers in the subtree pointed to by the

cursor. Thus in order to compute the sum of all true answers
we apply the counting function to the empty list. The fol-

lowing definition provides a procedure for constructing a

counting function for any predicate.

Definition 5.10. The counting function for a configuration

is defined by the following equations.

C(⟨return true | γ | []⟩) [] = 1

C(⟨return false | γ | []⟩) [] = 0

C(⟨p V | γ | σ ⟩) [] = C(⟨return true | γ | σ ⟩) []
+ C(⟨return false | γ | σ ⟩) []

C(⟨p V | γ | σ ⟩) (b :: bs) ≃ C(⟨return b | γ | σ ⟩) bs
C(⟨M | γ | σ ⟩) bs ≃ C(⟨M ′ | γ ′ | σ ′⟩) bs,

if ⟨M | γ | σ ⟩ −→ ⟨M ′ | γ ′ | σ ′⟩

where p is a distinguished free variable such that in all of

the above equations γ (p) = γ ′(p) = p. As with T , we write
C(P) for C(P p).

Definition 5.11 (generic count program). A program C :

((Nat → Bool) → Bool) → Nat is said to be an n-count
program if for every n-standard predicate P

C P {+ return V , such that JV K = C(P)([])

5.5 Complexity of Effectful Generic Counting
In this section we formulate correctness and asymptotic

bounds for running the effectful generic counting program

effcount on a predicate P . Full proofs are in Appendix B.

A key feature of the proof is that we must alternate be-

tween intensional and extensional modes of reasoning. As

effcount is a fixed program, we can reason intensionally

about its behaviour and thereby directly observe machine

transitions. But we must also consider the transitions of P .
Since the code for P is unknown we cannot employ the same

reasoning technique. Instead, we reason extensionally by

making use of the fact that the timed decision tree model of

P contains the exact number of transitions that P performs

in each branch of computation.

Theorem 5.12. For all n > 0 and any n-standard predicate
P it holds that

1. The program effcount is a generic counting program:

effcount P {+ return V such that NJV K = C(P)([]) ≤ 2
n

2. The runtime complexity of effcount P is given by:
|bs | ≤n∑
bs∈B∗

steps(T (P))(bs) + O(2n)

5.6 Pure Generic Counting
We have shown that there exists an implementation of count
in λh with a particular runtime bound. We now show that

no implementation of count in λb can match this bound. To

do so we exhibit two properties of the decision model:

1. there are no shortcuts, i.e. every leaf must be visited;

2. there can be no sharing of work amongst branches.

Together these two properties imply that every count pro-
gram has least time complexity Ω(n2n), because it must con-

struct 2
n
points, one for each leaf in the model, and apply

the predicate once to each point. Due to the lack of sharing,

each application of the predicate performs some redundant

work as the path to two neighbouring leaves share n edges

in the model. We formalise the first property in Section 5.7

and the second in Section 5.8. First, we give an example of a

pure generic count program and discuss better alternatives.

The following is a direct implementation of count in λb.

purecountn : ((Natn → Bool) → Bool) → Nat
purecountn := λP .count′ n⊥

where count′ 0 p := if P p then 1 else 0

count′ (1 + n′) p :=

count′ n′ (λi.if i = n′ then true else p i)
+ count′ n′ (λi.if i = n′ then false else p i)

⊥ _ := rec f i.f i

The implementation materialises 2
n
points which are en-

coded using a standard functional linked list representa-

tion. The auxiliary function count′ exhibits a recursion pat-

tern reminiscent of the classic recursive definition of the

Fibonacci function. The function is initially applied to the

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

divergent function ⊥, which is partly used to seed the list

generation, but also used to respond to queries i ≥ n such

that they diverge. The base case of count′ applies the predi-
cate P to the generated point.

At this point the reader may wonder why we cannot

simply use known continuation passing style (CPS) [19] or

monadic [24] transforms of effect handlers, or implement an

interpreter for effect handlers [18] in λb to achieve the shar-

ing of computation. Such global implementation techniques

are ruled out in our setting, because they would change the

type of count. For example, as any predicate P is a higher-

order function (supplied externally to count), we cannot even
CPS transform count locally as the interface of P would be

incompatible with the CPS interface. Many such transforms

are possible in a first-order setting, but they are not an option

for us due to the inherent higher-order nature of our setting.

5.7 No Shortcuts
We sketch the idea behind the proof of the fact that any

n-count program in λb must construct 2
n
points. Full details

are in Appendix C.2. The proof makes use of the observation

that the decision tree model encodes the canonical structure

of any n-standard predicate. We can reify a (semantic) n-
standard model as a (syntactic) n-standard predicate. This

procedure provides a means for converting any n-standard
predicate P into a canonical form (first compute the model,

then reify, a la normalisation by evaluation [6]).

Lemma 5.13. Suppose P is an n-standard predicate and C is
an n-count program, then C applies P to at least 2n distinct
n-points.

The lemma guarantees that any n-count program con-

structs an n-point corresponding to each leaf in the model

of any given n-standard predicate.

5.8 No Sharing
We now show that distinct predicate applications cannot

share computation. In order to do so, we introduce the notion

of threads. Intuitively, a thread corresponds to a path in a

decision tree model. Each thread of an n-standard model is

composed of n + 1 sections, where each corresponds to an

edge in the model. Thus we can identify the start and end

of any section by looking for point queries and responses.

Definition 5.15 makes use of an auxiliary reduction relation

↠ to define threads and sections. Intuitively, this reduction

relation ensures that we cannot inadvertently “step over” an

application of a point.

Definition 5.14 (↠). E[M]↠ E[N] iff E[M] { E[N] and
M is not of the form p V where p is a point.

Definition 5.15 (Sections and threads). A section is a pair of

computations, where the first component marks the start of

the section and the second marks the end. For an n-standard
predicate P , a thread of P consists of n + 1 sections. Given

a denotation, f , of a concrete n-point, and taking p to be

a distinguished free variable, a single thread for P can be

computed as follows

Th : Comp × (Nn → B)⇀ [(Comp,Comp)]
Th(P p, f) := (P p, E[p V]) :: Th(E[return LbM], f),

where Sec(P p) = E[p V] and b = f (NJV K)
Th(E[return W], f) :=
(E[return W], E ′[p V]) :: Th(E[return LbM], f)

where Sec(E[return W]) = E ′[p V] and b = f (NJV K)
Th(E[return W], f) := (E[return W], return V) :: []

where Sec(E[return W]) = return V

The auxiliary procedure Sec computes the end of a section

from the start.

Sec(E[M]) :=

{
E ′[p V] if E[M]↠+ E ′[p V]
return V if E[M]↠∗ return V

Now we show that every predicate application gives rise

to a corresponding thread via Th(−,−).

Lemma 5.16. Suppose P is an n-standard predicate, p is an
n-point, and f = PJpK, then

P p ↠+ E1[p V1] {+ E1[return Lf (NJV1K)M]↠+ · · ·
↠+ En[p Vn] {+ En[return Lf (NJVnK)M]↠∗ return W

if and only if

Th(P p, f) =

(P p, E1[p V1]),
(E1[return Lf (NJV1K)M], E2[p V2]),
...

(En[p Vn], En[return Lf (NJVnK)M]),
(En[return Lf (NJVnK)M], return W)

The lemma tells us that every predicate application has an

associated thread and vice versa. By Lemma 5.13 we know

that any n-count program must construct at least 2
n
distinct

threads. To establish the desired result, we need some way

of characterising disjointness of threads.

Definition 5.17. Let C denote an n-count program and P
an n-standard predicate. Any two threads T0 and T1 arising
from distinct applications of P in C are said to be disjoint

if every section computation of T0 is distinct from every

section computation of T1, where the section computations

of a thread comprise the set of all start and end computations

of the sections in that thread.

Now we may conclude that no two distinct predicate ap-

plications can share computation, or in other words every

section of their associated threads must be evaluated.

Lemma 5.18. Suppose P is an n-standard predicate and C
is an n-count program, and let p0 and p1 be distinct n-points,
then the predicate applications P p0 and P p1 within C have
disjoint threads.

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

Queens Integration
First solution All solutions Id Squaring Logistic

Parameter 20 24 28 8 10 12 20 14 17 20 1 2 3 4 5

Naïve ∞ ∞ ∞ 274.18 ∞ ∞ 17.17 50.61 65.8 80.58 ∞ ∞ ∞ ∞ ∞

Berger 9.29 12.69 ∞ 2.11 2.81 3.41 5.59 23.30 25.65 27.50 26.10 33.27 34.02 32.76 31.00

Pruned 2.03 2.37 2.66 1.29 1.42 1.52 2.27 4.39 5.00 5.08 4.80 6.25 7.18 8.09 8.80
Bespoke 0.13 0.12 0.12 0.15 0.05 0.04

Table 1. Speedup of the Effectful Implementation

5.9 Complexity of Pure Generic Counting
Now we can plug together the formal machinery developed

in the previous sections to state and prove the complexity

result for pure generic counting programs.

Theorem 5.19. For all n > 0 and every n-count program
count ∈ λb, and n-standard predicate the runtime of count P
is at least

|bs | ≤n∑
bs∈B∗

2
n−|bs |steps(t)(bs) + Ω(n2n)

where t = T(P).

Proof. By composing Lemmas 5.13 and 5.18 we obtain the

result in terms of the operational semantics. To lift this result

to the abstract machine semantics we apply Theorem 4.2.

□

6 Robustness
Our complexity result is robust as it remains true in more

general settings. We outline here how it generalises beyond

n-standard predicates and to richer base languages.

Beyond n-standardPredicates The n-standard restriction
ensures that the models of predicates are complete binary

trees. It is possible to relax the restriction at the expense of

a more complicated analysis. The restriction serves to make

the result as crisp as possible. Nevertheless, we may augment

the effcount program with internal state to keep track of the

queries raised by predicates and to remember answers of

previous queries. State is definable in λh using a standard

technique known as parameter-passing [38].

Mutable State Mutable state is a staple ingredient of many

practical programming languages. To support mutable state,

the base language is endowed with a heap (giving rise to

a CESK machine [12], where S means store). Modulo heap

bookkeeping, the analysis is the same.

7 Experiments
The theoretical efficiency gap between realisations of λb and
λh manifests in practice. We have observed it empirically

on instantiations of n-Queens and exact real number inte-

gration, which can be cast as generic search. Table 1 shows

the speedup of using an effectful implementation of generic

search over various pure implementations. We discuss the

benchmarks and results in further detail below.

Methodology We evaluated an effectful implementation of

generic search against three “pure” implementations which

are realisable in λb extended with mutable state:

• Naïve: a variation of the purecount program;

• Pruned: a generic search procedure with space pruning

based on Longley’s technique [28] (uses local state);

• Berger: a lazy pure functional generic search procedure

based on Berger’s algorithm [5].

Each benchmark was run 11 times. The reported figure is the

median runtime ratio between the particular implementation

and the baseline effectful implementation. Benchmarks that

failed to terminate within a threshold (1 minute for single

solution, 8 minutes for enumerations), are reported as ∞.

The experiments were conducted in SML/NJ v110.78 with

factory settings on an Intel Xeon CPU E5-1620 v2@ 3.70GHz

powered workstation running Ubuntu 16.04. The effectful

implementation uses an encoding of delimited control akin

to effect handlers based on top of SML/NJ’s call/cc.

Queens We phrase the n-Queens problem as a generic

search problem. As a control we include a bespoke imple-

mentation hand-optimised for the problem. We perform two

experiments: finding the first solution for n ∈ {20, 24, 28} and
enumerating all solutions for n ∈ {8, 10, 12}. The speedup
over the naïve implementation is dramatic, but less so over

the Berger procedure. The pruned procedure is more compet-

itive, but still slower than the baseline. Unsurprisingly, the

baseline is much slower than the bespoke implementation.

Exact Real Integration The integration benchmarks are

adapted from Simpson [39]. We integrate three different

functions with varying precision in the interval [0, 1]. For
the identity function (Id) at precision 20 the speedup relative

to Berger is 5.59×. For the squaring function the speedups

are larger at higher precisions: at precision 14 the speedup

is 4.39× over the pruned integrator, whilst it is 5.08× at

precision 20. The speedups are more extreme against the

naïve and Berger integrators. We also integrate the logistic

map x 7→ 1 − 2x2 at a fixed precision of 15. We make the

function harder to compute by iterating it up to 5 times.

12

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

Between the pruned and effectful integrator the speedup

ratio increases as the function becomes harder to compute.

8 Conclusions and Future Work
We presented a PCF-inspired language λb and its extension

with effect handlers λh. We proved that λh exhibits an asymp-

totically more efficient implementation of generic search

than any possible implementation in λb. We observed its

effect in practice on several benchmarks.

The result extends to other control operators by appeal to

existing results on interdefinability of handlers and other con-

trol operators [17, 34]. The result no longer applies directly

if we add an effect type system to λh, as the implementation

of the counting program would require a change of type for

predicates to reflect the ability to perform effectful opera-

tions. In future we plan to investigate how to account for

effect type systems.

Acknowledgments
We would like to thank James McKinna for insightful dis-

cussions about this work. Daniel Hillerström was supported

by EPSRC grant EP/L01503X/1 (EPSRC Centre for Doctoral

Training in Pervasive Parallelism). Sam Lindley was sup-

ported by EPSRC grant EP/K034413/1 (From Data Types to

Session Types—A Basis for Concurrency and Distribution).

References
[1] Andrej Bauer. 2011. How make the "impossible" functionals

run even faster. Mathematics, Algorithms and Proofs, Lei-

den, the Netherlands. (2011). http://math.andrej.com/2011/12/06/
how-to-make-the-impossible-functionals-run-even-faster/

[2] Andrej Bauer. 2018. What is algebraic about algebraic effects and

handlers? CoRR abs/1807.05923 (2018).

[3] Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic

effects and handlers. J. Log. Algebr. Meth. Program. 84, 1 (2015), 108–
123.

[4] Nick Benton and Andrew Kennedy. 2001. Exceptional Syntax Journal

of Functional Programming. J. Funct. Program. 11, 4 (2001), 395–410.
[5] Ulrich Berger. 1990. Totale Objekte und Mengen in der Bereichstheorie.

Ph.D. Dissertation. Ludwig Maximillians-Universtität, Munich.

[6] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. 1998. Nor-

malisation by Evaluation. In Prospects for Hardware Foundations (Lec-
ture Notes in Computer Science), Vol. 1546. Springer, 117–137.

[7] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski.

2019. Abstracting algebraic effects. PACMPL 3, POPL (2019), 6:1–6:28.

[8] Richard Bird, Geraint Jones, and Oege de Moor. 1997. More haste

less speed: lazy versus eager evaluation. J. Funct. Progr. 7, 5 (1997),
541–547.

[9] Robert Cartwright and Matthias Felleisen. 1992. Observable Sequen-

tiality and Full Abstraction. In POPL. ACM Press, 328–342.

[10] Robbie Daniels. 2016. Efficient Generic Searches and Programming
Language Expressivity. Master’s thesis. School of Informatics, the

University of Edinburgh, Scotland. http://homepages.inf.ed.ac.uk/jrl/
Research/Robbie_Daniels_MSc_dissertation.pdf

[11] Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and

Anil Madhavapeddy. 2015. Effective Concurrency through Algebraic

Effects. OCaml Workshop. (2015).

[12] Matthias Felleisen. 1987. The Calculi of Lambda-nu-cs Conversion:
A Syntactic Theory of Control and State in Imperative Higher-order
Programming Languages. Ph.D. Dissertation. Indianapolis, IN, USA.
AAI8727494.

[13] Matthias Felleisen. 1991. On the expressive power of programming

languages. Sci. Comput. Prog. 17, 1–3 (1991), 35–75.
[14] Matthias Felleisen and Daniel P. Friedman. 1987. Control Operators,

the SECD-machine, and the λ-Calculus. In The Proceedings of the Con-
ference on Formal Description of Programming Concepts III, Ebberup,
Denmark. Elsevier, 193–217.

[15] Andrzej Filinski. 1994. Representing Monads. In POPL. ACM Press,

446–457.

[16] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.

1993. The Essence of Compiling with Continuations. In PLDI. ACM,

237–247.

[17] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar.

2017. On the expressive power of user-defined effects: effect han-

dlers, monadic reflection, delimited control. PACMPL 1, ICFP (2017),

13:1–13:29.

[18] Daniel Hillerström and Sam Lindley. 2016. Liberating effects with

rows and handlers. In TyDe@ICFP. ACM, 15–27.

[19] Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakr-

ishnan. 2017. Continuation Passing Style for Effect Handlers. In FSCD
(LIPIcs), Vol. 84. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

18:1–18:19.

[20] Neil Jones. 2001. The expressive power of higher-order types, or, life

without CONS. J. Funct. Progr. 11 (2001), 5–94.
[21] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in

action. In ICFP. ACM, 145–158.

[22] Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible

effects: an alternative to monad transformers. In Haskell. ACM, 59–70.

[23] Donald Knuth. 1997. The Art of Computer Programming, Volume 1:
Fundamental Algorithms (third edition). Addison-Wesley.

[24] Daan Leijen. 2017. Type directed compilation of row-typed algebraic

effects. In POPL. ACM, 486–499.

[25] Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling

environments in call-by-value programming languages. Inf. Comput.
185, 2 (2003), 182–210.

[26] Sam Lindley. 2014. Algebraic effects and effect handlers for idioms

and arrows. In WGP@ICFP. ACM, 47–58.

[27] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do

be do. In POPL. ACM, 500–514.

[28] John Longley. 1999. When is a functional program not a functional

program?. In ICFP. ACM, 1–7.

[29] John Longley. 2018. Bar recursion is not computable via iteration. To

appear in Computability. Available at arxiv.org/abs/1804.07277. (2018).

[30] John Longley. 2018. The recursion hierarchy for PCF is strict. Logical
Methods in Comput. Sci. 14, 3:8 (2018), 1–51.

[31] John Longley and Dag Normann. 2015. Higher-Order Computability.
Springer.

[32] Chris Okasaki. 1999. Purely functional data structures. Cambridge

University Press.

[33] Nicholas Pippenger. 1996. Pure versus impure Lisp. In POPL. ACM,

104–109.

[34] Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Typed Equiv-

alence of Effect Handlers and Delimited Control. In FSCD (LIPIcs),
Vol. 131. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 30:1–

30:16.

[35] Gordon Plotkin. 1997. LCF considered as a programming language.

Theor. Comput. Sci. 5, 3 (1997), 223–255.
[36] Gordon D. Plotkin and John Power. 2001. Adequacy for Algebraic

Effects. In FoSSaCS (Lecture Notes in Computer Science), Vol. 2030.
Springer, 1–24.

13

https://www.epsrc.ac.uk/
http://pervasiveparallelism.inf.ed.ac.uk
https://www.epsrc.ac.uk
http://groups.inf.ed.ac.uk/abcd/
http://math.andrej.com/2011/12/06/how-to-make-the-impossible-functionals-run-even-faster/
http://math.andrej.com/2011/12/06/how-to-make-the-impossible-functionals-run-even-faster/
http://homepages.inf.ed.ac.uk/jrl/Research/Robbie_Daniels_MSc_dissertation.pdf
http://homepages.inf.ed.ac.uk/jrl/Research/Robbie_Daniels_MSc_dissertation.pdf

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

[37] GordonD. Plotkin andMatija Pretnar. 2013. Handling Algebraic Effects.

Logical Methods in Computer Science 9, 4 (2013).
[38] Matija Pretnar. 2015. An Introduction to Algebraic Effects and Han-

dlers. Electr. Notes Theor. Comput. Sci. 319 (2015), 19–35. Invited

tutorial paper.

[39] Alex K. Simpson. 1998. Lazy Functional Algorithms for Exact Real

Functionals. In MFCS (Lecture Notes in Computer Science), Vol. 1450.
Springer, 456–464.

14

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

Configurations

L⟨M | γ | σ ⟩M = LσM(LMMγ)

Continuations
L[]MM = M

L(γ , x,N) :: σMM = LσM(let x ← M in LN M(γ\{x}))
Computation terms

LV W Mγ = LV Mγ LW Mγ
Llet ⟨x; y⟩ = V in N Mγ = let ⟨x; y⟩ = LV Mγ in LN M(γ\{x, y})

Lcase V {inl x 7→ M; inr y 7→ N }Mγ = case LV Mγ {inl x 7→ LMM(γ\{x});
inr y 7→ LN M(γ\{y})}

Lreturn V Mγ = return LV Mγ
Llet x ← M in N Mγ = let x ← LMMγ in LN M(γ\{x})

Value terms and values

LxMγ = LvM, if γ (x) = v
LxMγ = x, if x < dom(γ)
LnMγ = n

LλxA.MMγ = λxA.LMM(γ\{x})
Lrec f xA.MMγ = rec f xA.LMM(γ\{f , x})

L⟨⟩Mγ = ⟨⟩
L⟨V ;W ⟩Mγ = ⟨LV Mγ ; LW Mγ ⟩

L(inl V)BMγ = (inl LV Mγ)B

L(inr W)AMγ = (inr LW Mγ)A

LnM = n
L(γ , λxA.M)M = λxA.LMM(γ\{x})

L(γ , rec f xA.M)M = rec f xA.LMM(γ\{f , x})
L⟨⟩M = ⟨⟩

L⟨v;w⟩M = ⟨LvM; LwM⟩
L(inl v)BM = (inl LvM)B

L(inr w)AM = (inr LwM)A

LσAM = λxA.LσM(return x)

Figure 6. Mapping from Base Machine Configurations to Terms

A Proof Details for Correctness of the Base Abstract Machine
Correctness We now show that the abstract machine is correct with respect to the operational semantics, that is, the abstract

machine faithfully simulates the operational semantics. Initial states provide a canonical way to map a computation term

onto the abstract machine. A more interesting question is how to map an arbitrary configuration to a computation term.

Figure 6 describes such a mapping L−M from configurations to terms via a collection of mutually recursive functions defined on

configurations, continuations, computation terms, value terms, and machine values. The mapping makes use of two operations

on environments, γ , which we define now.

Definition A.1. We write dom(γ) for the domain of γ , and γ\{x1, . . . , xn} for the restriction of environment γ to

dom(γ)\{x1, . . . , xn}.

The L−M function enables us to classify the abstract machine reduction rules according to how they relate to the operational

semantics. The rule (M-Let) is administrative in the sense that L−M is invariant under this rule. This leaves the β-rules (M-App),

(M-Split), (M-Case), and (M-RetCont). Each of these corresponds directly with performing a reduction in the operational

semantics.

Definition A.2 (Auxiliary reduction relations). We write −→a for administrative steps, −→β for β-steps, and =⇒ for a

sequence of steps of the form −→∗a−→β .

The following lemma describes how we can simulate each reduction in the operational semantics by a sequence of

administrative steps followed by one β-step in the abstract machine.

Lemma A.3. Suppose M is a computation and C is configuration such that LCM = M, then if M { N there exists C′ such that
C =⇒ C′ and LC′M = N, or if M ̸{ then C ≠⇒.

Proof. By induction on the derivation of M { N . □

The correspondence here is rather strong: there is a one-to-one mapping between{ and =⇒. The inverse of the lemma is

straightforward as the semantics is deterministic. Notice that Lemma A.3 does not require that M be well-typed. We have

chosen here not to perform type-erasure, but the results can be adapted to semantics in which all type annotations are erased.

Theorem A.4 (Simulation). If ⊢ M : A and M {+ N such that N is normal, then ⟨M | ∅ | []⟩ −→+ C such that LCM = N, or
M ̸{ then ⟨M | ∅ | []⟩ ̸−→.

Proof. By repeated application of Lemma A.3. □
15

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

B Proof Details for the Complexity of Effectful Generic Counting
In this appendix we give proof details and artefacts for Theorem 5.12. Throughout this section we let Hcount denote the handler

definition of count, that is

Hcount :=

val x 7→ if x then return 1 else return 0

Branch ⟨⟩ r 7→ let x ← r true in
let y ← r false in
x + y

The timed decision tree model embeds timing information. For the proof we must also know the abstract machine environment

and the pure continuation. Thus we decorate timed decision trees with this information.

Definition B.1 (decorated timed decision trees). A decorated timed decision tree is a partial function t : B∗ ⇀ (Lab ×
Nat) × (Env × PureCont) such that its first projection bs 7→ t(bs).1 is a timed decision tree. As an abbreviation, we define

DT := B∗ ⇀ (Lab × Nat) × (Env × PureCont).

We extend the projections labs and steps in the obvious way to work over decorated timed decision trees. We define two

further projections. The first env(t) := bs 7→ t(bs).2.1 projects the environment, whilst the second pure(t) := bs 7→ t(bs).2.2
projects the pure continuation.

The following definition gives a procedure for constructing a decorated timed decision tree. The construction is similar to

that of Definition 5.4.

Definition B.2. The decorated timed decision tree of a configuration is defined by the following equations

D : Conf ⇀ DT
D(⟨return true | γ | []⟩) [] = ((!true, 0), (γ , []))
D(⟨return false | γ | []⟩) [] = ((!false, 0), (γ , []))

D(⟨p V | γ | σ ⟩) [] = ((?JV Kγ , 0), (γ ,σ))

D(⟨p V | γ | σ ⟩) (b :: bs) ≃ D(⟨return b | γ | σ ⟩) bs
D(⟨M | γ | σ ⟩) bs ≃ I(D(⟨M ′ | γ ′ | σ ′⟩) bs),

if ⟨M | γ | σ ⟩ −→ ⟨M ′ | γ ′ | σ ′⟩

where I((ℓ, s), (γ ,σ)) := ((ℓ, s + 1), (γ ,σ)) and p is a distinguished free variable such that in all of the above equations

γ (p) = γ ′(p) = p.

We shall write D(P) to mean D(⟨P p | ∅[p 7→ p] | []⟩).
We define some functions, that given a list of booleans and a n-standard predicate, compute configurations of the effectful

abstract machine at particular points of interest during evaluation of the given predicate. Let χcount(V) := (∅[pred 7→
JV K∅],Hcount) denote the handler closure of Hcount.

Notation. For an n-standard predicate P we write |P | = n for the size of the predicate. Furthermore, we define χid for the
identity handler closure (∅, {val x 7→ x}).

Definition B.3 (computing machine configurations). For any given n-standard predicate P and a list of booleans bs, such that

|bs | ≤ n, we can compute machine configurations at points of interest during evaluation of count P .
To make the notation slightly simpler we use the following conventions whenever n, t, and c appear free: n = |P |, t = D(P),

and c = C(P).

• The function arrive either computes the configuration at a query node, if |bs | < n, or the configuration at an answer

node.

arrive : B∗ × Val⇀ Conf
arrive(bs, P) := ⟨V j | γ | (σ , χcount(P)) :: residual(bs, P)⟩, if |bs | < n
where γ = env(t)(bs), ?j = labs(t)(bs), and JV Kγ = (env⊥(P), λ_.do Branch ⟨⟩)
arrive(bs, P) := ⟨return b | γ | ([], χcount(P)) :: residual(bs, P)⟩, if |bs | = n

where γ = env(t)(bs) and !b = labs(t)(bs)
16

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

• Correspondingly, the depart function computes the configuration either after the completion of a query or handling of

an answer.

depart : B∗ × Val⇀ Conf
depart(bs, P) := ⟨return m | γ | residual(bs, P)⟩, if |bs | < n
where γ = env↑false(bs, P) and m = c(true :: bs) + c(false :: bs)
depart(bs, P) := ⟨return m | γ | residual(bs, P)⟩, if |bs | = n

where γ = env⊥(P) and m = c(bs)

The two clauses of depart yield slightly different configurations. The first clause computes a configuration inside the

operation clause of Hcount. The configuration is exactly tail-configuration after summing up the two respective values

returned by the two invocations of resumption. Whilst the second clause computes the tail-configuration inside of the

success clause of Hcount after handling a return value of the predicate.

• The residual function computes the residual continuation structure which contains the bits of computations to perform

after handling a complete path in a decision tree.

residual : B∗ × Val⇀ Cont
residual(bs, P) := [(purecont(bs, P), χid)]

• The function purecont computes the pure continuation.

purecont : B∗ × Val⇀ PureCont
purecont([], P) := []

purecont(true :: bs, P) := (γ , xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P),
where γ = env↓true(true :: bs, P)

purecont(false :: bs, P) := (γ , xfalse, xtrue + xfalse) :: purecont(bs, P),
where γ = env↓false(false :: bs, P)

• The function env⊥ computes the initial environment of the handler. The family of functions env↓b∈B contains two

functions, one for each instantiation of b, which describe how to compute the environment prior descending down a

branch as the result of invoking a resumption with b. Analogously, the functions in the family env↑b∈B describe how to

compute the environment after ascending from the resumptive exploration of a branch.

env⊥ : Val→ Env
env⊥(P) := ∅[pred 7→ JPK∅]

env↓true : B∗ × Val⇀ Env
env↓true(bs, P) := env⊥(V)[r 7→ (σ , χcount(P))],

where σ = pure(t)(bs)

env↓false : B∗ × Val⇀ Env
env↓false(bs, P) := γ [x 7→ i],
where γ = env↓true(bs, P) and i = c(true :: bs)

env↑false : B∗ × Val⇀ Env
env↑false(bs, P) := γ [y 7→ j],
where γ = env↓false(bs, P) and j = c(false :: bs)

We require an auxiliary lemma, because we need to be able to reason about bits of predicate computation, specifically

when the predicate is first applied, going from a departure configuration to an arrival configuration, and from a departure

configuration to an answer configuration. The following lemma states that for an n-standard predicate, handler machine

transitions in lock-step with the base machine.

For a given predicate P we write χcount(P)val to mean χcount(P)val = (∅[pred 7→ JPK∅],Hcount)
val = Hval

count, that is the

projection of the success clause of Hcount.

Lemma B.4. For any given n-standard predicate P and a list of booleans bs ∈ B∗ such that |bs | ≤ n along with two value V : Bool
and b ∈ B, then the base machine and handler machine transition in lock-step in either way

17

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1. If |bs | = [], then

⟨P p | γ | []⟩
−→ steps(t)([])

⟨p LiM | γ ′ | σ ⟩,

where ?i = labs(t)([]), γ = ∅[P 7→ P], γ ′ = env(t)([]), and σ = pure(t)([]); implies the handler machine perform the same
amount of transitions

⟨P p | γ | ([], χcount(P)) :: residual(P, [])⟩[(λ_.do Branch ⟨⟩)/p]
−→ steps(t)([])

⟨p LiM | γ ′ | (σ , χcount(P)) :: residual(P, [])⟩[(λ_.do Branch ⟨⟩)/p]

2. For bs = b :: bs′ we have the following two subcases
• If |bs | < n, then

⟨return b | γ | σ ⟩
−→ steps(t)(b::bs)

⟨p LiM | γ ′ | σ ⟩,

where ?i = labs(t)(b :: bs), γ = env↓b , γ
′ = env(t)(b :: bs), and σ = pure(t)(bs); implies the handler machine perform the

same amount of transitions

⟨return LbM | γ | (σ , χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]
−→ steps(t)(b::bs)

⟨p LiM | γ ′ | (σ , χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]

• If |bs | = n, then

⟨return LbM | γ | σ ⟩
−→ steps(t)(b::bs′)

⟨return Lb′M | γ ′ | []⟩,

where !b′ = labs(t)(b :: bs), γ = env(t)(bs), γ ′ = env(t)(b :: bs), and σ = pure(t)(bs); implies the handler machine
perform the same amount of transitions

⟨return LbM | γ | (σ , χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]
−→ steps(t)(b::bs′)

⟨return Lb′M | γ ′ | ([], χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]

Proof. Proof by induction on the transition relation −→. □

Let control : Conf ⇀ Val denote a partial function that hoists a value out of a given machine configuration, that is

control(⟨M | γ | κ⟩) :=

{
JV Kγ if M = return V
⊥ otherwise

The following lemma performs most of the heavy lifting for the proof of Theorem 5.12.

Lemma B.5. Suppose P is an n-standard predicate, then for any list of booleans bs ∈ B∗ such that |bs | ≤ n

arrive(bs, P) {T (bs,n) depart(bs, P),

and control(depart(bs, P)) ≤ 2
n−|bs | with the function T defined as

T (bs, n) =

{
9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 +

∑
1≤ |bs′ | ≤n−|bs |
bs′∈B∗ steps(t)(bs′ ++ bs) if |bs | < n

2 if |bs | = n

Proof. By downward induction on bs.
18

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

Base step We have that |bs | = n. Since the predicate is n-standard we further have that n ≥ 1. We proceed by direct

calculation.

arrive(bs, P)
= (definition of arrive when n = |bs |)
⟨return b | γ | ([], χcount(P)) :: residual(bs, P)⟩

where γ = env(t)(bs) and !b = labs(t)(bs)
−→ (M-RetHandler, χcount(P)val = {val x 7→ · · · })
⟨if x then return 1 else return 0 | γ ′[x 7→ JbKγ ′] | residual(bs, P)⟩

where γ ′ = χcount(P).1
The value b can assume either of two values. We consider first the case b = true.

= (assumption b = true, definition of J−K (2 value steps))
⟨if x then return 1 else return 0 | γ ′[x 7→ true] | residual(bs, P)⟩

−→ (M-If-tt (and log |γ ′[x 7→ true]| = 1 environment operations))

⟨return 1 | γ ′[x 7→ true] | residual(bs, n, P, t, c)⟩
= (definition of depart when n = |bs |)
depart(bs, P)

We have that control(depart(bs, P)) = 1 ≤ 2
0 = 2

n−|bs |
. Next, we consider the case when b = false.

= (assumption b = false, definition of J−K (2 value steps))
⟨if x then return 1 else return 0 | γ ′[x 7→ false] | residual(bs, P)⟩

−→ (M-If-tt (and log |γ ′[x 7→ false]| = 1 environment operations))

⟨return 0 | γ ′[x 7→ false] | residual(bs, n, P, t, c)⟩
= (definition of depart when n = |bs |)
depart(bs, P)

Again, we have that control(depart(bs, P)) = 0 ≤ 2
0 = 2

n−|bs |
.

Step analysis In either case, the machine uses exactly 2 transitions. Thus we get that

2 = T (bs, n), when |bs | = n

Inductive step The induction hypothesis states that for all b ∈ B and |bs | < n

arrive(b :: bs, P) {T (b::bs,n) depart(b :: bs, P),

such that control(depart(b :: bs, P)) ≤ 2
n−|b::bs |

. We proceed by direct calculation.

arrive(bs, P)
= (definition of arrive when n < |bs |)
⟨V j | γ | (σ , χcount(P)) :: residual(bs, P)⟩

where ?j = labs(t)(bs),γ = env(t)(bs),σ = pure(t)(bs), and V = (env⊥(P), λ_.do Branch ⟨⟩)
−→ (M-App)

⟨do Branch ⟨⟩ | γ ′[_ 7→ JjKγ ′] | (σ , χcount(P)) :: residual(bs, P)⟩
where γ ′ = env⊥(P)

−→ (M-Handle-Op, χcount(P)Branch = {Branch ⟨⟩ r 7→ · · · })〈let xtrue ← r true in
let xfalse ← r false in
xtrue + xfalse

| γ [r 7→ J(σ , χcount(P))Kγ] | residual(bs, P)

〉
where γ = env⊥(P)

= (definition of J−K (1 value step))〈let xtrue ← r true in
let xfalse ← r false in
xtrue + xfalse

| γ ′ | residual(bs, P)

〉
where γ ′ = γ [r 7→ (σ , χcount(P))]

−→ (M-Let, definition of residual)
⟨r true | γ ′ | residual(true :: bs, P)⟩

−→ (M-Resume, JrKγ ′ = (σ , χcount(P)) (log |γ ′ | = 1 environment operations))

⟨return true | γ ′ | (σ , χcount(P)) :: residual(true :: bs, P)⟩
19

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

We now use Lemma B.4 to reason about the progress of the predicate computation σ . There are two cases consider,

either 1 + |bs | < n or 1 + |bs | = n.
Case 1 + |bs | < n. We obtain the following configuration.

−→ steps(t)(true::bs) (by Lemma B.4)

⟨V j | γ ′′ | (σ ′, χcount(P)) :: residual(true :: bs, P)⟩
where ?j = labs(t)(true :: bs),γ ′′ = env(t)(true :: bs),σ ′ = pure(t)(true :: bs)

and JV Kγ ′′ = (env⊥(P), λ_.do Branch ⟨⟩)
= (definition of arrive when 1 + |bs | < n)
arrive(true :: bs, P)

−→ T (true::bs,n) (induction hypothesis)

depart(true :: bs, P)
= (definition of depart when 1 + |bs | < n)
⟨return i | γ | residual(true :: bs, P)⟩

where i = c(true :: true :: bs) + c(false :: true :: bs) and γ = env↑false(true :: bs, P)
= (definition of residual and purecont)
⟨return i | γ | [((γ ′, xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P), χid)]⟩

where γ ′ = env↓true(bs, P)
−→ (M-RetCont)

⟨let xfalse ← r false in xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩
where γ ′′ = γ ′[xtrue 7→ JiKγ ′]

−→ (M-Let)

⟨r false | γ ′′ | [((γ ′′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩
= (definition of purecont and residual)
⟨r false | γ ′′ | residual(false :: bs, P)⟩

−→ (M-Resume)

⟨return false | γ ′′ | (σ , χcount(P)) :: residual(false :: bs, P)⟩
where σ = pure(t)(bs)

−→ steps(t)(false::bs) (by Lemma B.4 and assumption |false :: bs | < n)
⟨V j | γ | (σ , χcount(P)) :: residual(false :: bs, P)⟩

where ?j = labs(t)(false :: bs),σ = pure(t)(false :: bs),γ = env(t)(false :: bs)
and JV Kγ = (env⊥(P), λ_.do Branch ⟨⟩)
= (definition of arrive when 1 + |bs | < n)
arrive(false :: bs, P)

−→ T (false::bs,n) (induction hypothesis)

depart(false :: bs, P)
= (definition of depart when 1 + |bs | < n)
⟨return j | γ | residual(false :: bs, P)⟩

where j = c(true :: false :: bs) + c(false :: false :: bs) and γ = env↑false(false :: bs, P)
= (definition of residual and purecont)
⟨return j | γ | [((γ ′′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩

−→ (M-RetCont)

⟨xtrue + xfalse | γ ′′[xfalse 7→ JjKγ ′′] | residual(bs, P)⟩
−→ (M-Plus)

⟨return m | γ ′′[xfalse 7→ JjKγ ′′] | residual(bs, P)⟩
where m = c(true :: true :: bs) + c(false :: true :: bs) + c(true :: false :: bs) + c(false :: false :: bs)

= c(true :: bs) + c(false :: bs) = c(bs) ≤ 2
n−|bs |

= (definition of depart when |bs | < n)
depart(bs, P)

20

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

Step analysis The total amount of machine transitions is given by

9 + steps(t)(true :: bs) + T (true :: bs, n) + steps(t)(false :: bs) + T (false :: bs, n)
= (reorder)

9 + T (true :: bs, n) + steps(t)(false :: bs) + steps(t)(true :: bs) + steps(t)(false :: bs)
= (definition of T)
9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|true::bs |+1 + 2n−|false::bs |+1

+

1≤ |bs′ | ≤n−|true::bs |∑
bs′∈B∗

steps(t)(bs′ ++ true :: bs) +
1≤ |bs′ | ≤n−|false::bs |∑

bs′∈B∗
steps(t)(bs′ ++ false :: bs)

+steps(t)(true :: bs) + steps(t)(false :: bs)
= (simplify)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1

+

1≤ |bs′ | ≤n−|true::bs |∑
bs′∈B∗

steps(t)(bs′ ++ true :: bs) +
1≤ |bs′ | ≤n−|false::bs |∑

bs′∈B∗
steps(t)(bs′ ++ false :: bs)

+steps(t)(true :: bs) + steps(t)(false :: bs)
= (merge sums)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1

+

(
2≤ |bs′ | ≤n−|bs |∑

bs′∈B∗
steps(t)(bs′ ++ bs)

)
+ steps(t)(true :: bs) + steps(t)(false :: bs)

= (rewrite binary sum)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1

+

2≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs) +
1≤ |bs′ | ≤1∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (merge sums)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (factoring)

9 + 2 ∗ 9 ∗ (2n−|bs |−1 − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (distribute)

9 + 9 ∗ (2n−|bs | − 2) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (distribute)

9 + 9 ∗ 2n−|bs | − 18 + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (simplify)

9 ∗ 2n−|bs | − 9 + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (factoring)

9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (definition of T)
T (bs, n)

21

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

Case 1 + |bs | = n. We obtain the following configuration.

−→ steps(t)(true::bs) (by Lemma B.4)

⟨return b | γ ′′ | ([], χcount(P)) :: residual(true :: bs, P)⟩
where !b = labs(t)(true :: bs),γ ′′ = env(t)(true :: bs)

= (definition of arrive when 1 + |bs | = n)
arrive(true :: bs, P)

−→ T (true::bs,n) (induction hypothesis)

depart(true :: bs, P)
= (definition of depart when 1 + |bs | = n)
⟨return i | γ | residual(true :: bs, P)⟩

where i = c(true :: bs) ≤ 2
n−|true::bs | = 1 and γ = env⊥(P)

= (definition of residual and purecont)
⟨return i | γ | [((γ ′, xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P), χid)]⟩

−→ (M-RetCont)

⟨let xfalse ← r false in xtrue + xfalse | γ ′[xtrue 7→ JiKγ ′] | [(purecont(bs, P), χid)]⟩
= (definition of J−K (1 value step))
⟨let xfalse ← r false in xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩

where γ ′′ = γ ′[xtrue 7→ i]
−→ (M-Let, definition of residual)
⟨r false | γ ′′ | residual(false :: bs, P)⟩

−→ (M-Resume)

⟨return false | γ ′′ | (σ , χcount(P)) :: residual(false :: bs, P)⟩
where σ = pure(t)(bs)

−→ steps(t)(false::bs) (by Lemma B.4 and assumption 1 + |bs | = n)
⟨return b | γ | ([], χcount(P)) :: residual(false :: bs, P)⟩

where !b = labs(t)(false :: bs),γ = env(t)(false :: bs)
= (definition of arrive when 1 + |bs | = n)
arrive(false :: bs, P)

−→ T (false::bs,n) (induction hypothesis)

depart(false :: bs, P)
= (definition of depart when 1 + |bs | = n)
⟨return j | γ | residual(false :: bs, P)⟩

where j = c(false :: bs) ≤ 2
n−|false::bs | = 1 and γ = env⊥(P)

= (definition of residual and purecont)
⟨return j | γ | [((γ ′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩

where γ ′ = env↓false(bs, P)
−→ (M-RetCont)

⟨xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩
where γ ′′ = γ ′[xfalse 7→ JjKγ ′] = γ ′[xfalse 7→ j]

−→ (M-Plus)

⟨return m | γ ′′ | [(purecont(bs, P), χid)]⟩
where m = c(true :: bs) + c(false :: bs) ≤ 2

n−|bs |

= (definition of residual and depart when |bs | < n)
depart(bs, P)

22

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

Step analysis The total amount of machine transitions is given by

9 + steps(t)(true :: bs) + T (true :: bs, n) + steps(t)(false :: bs) + T (false :: bs, n)
= (reorder)

9 + T (true :: bs, n) + T (false :: bs, n) + steps(t)(true :: bs) + steps(t)(false :: bs)
= (definition of T when |bs | + 1 = n)
9 + 2 + 2 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (simplify)

9 + 22 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (rewrite 2 = n − |bs | + 1)
9 + 2n−|bs |+1 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (multiply by 1)

9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (rewrite binary sum)

9 ∗ (2n−|bs | − 1) + 2n−|bs | +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (definition of T)
T (bs, n)

□

The following theorem is a copy of Theorem 5.12.

Theorem B.6. For all n > 0 and any n-standard predicate P it holds that

1. The program effcount is a generic counting program, that is:

effcount P {+ return V , such that NJV K = C(P)([]) ≤ 2
n

2. The runtime complexity of effcount P is given by the following formula:

|bs | ≤n∑
bs∈B∗

steps(T (P))(bs) + O(2n)

23

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

Proof. The proof begins by direct calculation.

⟨effcount P | ∅ | [([], χid)]⟩
= (definition of residual)
⟨effcount P | ∅ | residual(P, [], t, c)⟩

−→ (M-App, JeffcountK∅ = (∅, λpred. · · ·))
⟨handle pred (λ_.do Branch ⟨⟩) with Hcount | γ | residual(P, [])⟩

where γ = env⊥(P)
−→ (M-Handle)

⟨pred (λ_.do Branch ⟨⟩) | γ | ([], (γ ,Hcount)) :: residual(P, [])⟩
= (definition of χcount)
⟨pred (λ_.do Branch ⟨⟩) | γ | ([], χcount(P)) :: residual(P, [])⟩

−→ steps(t)([]) (by Lemma B.4)

⟨(λ_.do Branch ⟨⟩) j | γ ′ | (σ , χcount(P)) :: residual(P, [])⟩
where γ ′ = env(t)([]),σ = pure(t)(bs) and ?j = labs(t)(bs)
= (definition of arrive)
arrive(P, [])

−→ T ([],n) (by Lemma B.5)

depart(P, [])
= (definition of depart)
⟨return m | γ | residual(P, [])⟩

where γ = env⊥(P) and m = c([]) ≤ 2
n−|bs | = 2

n

= (definition of residual)
⟨return m | γ | [([], χid)]⟩

−→ (M-Handle-Ret, H val
id = {val x 7→ return x})

⟨return x | ∅[x 7→ m] | []⟩

Analysis The machine yields the value m. By Lemma B.5 it follows that m ≤ 2
n−|bs | = 2

n−|[] | = 2
n
. Furthermore, the total

amount of transitions used were

5 + steps(t)([]) + T ([], n)
= (definition of T)

5 + steps(t)([]) + 9 ∗ 2n + 2n+1 +
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

= (simplify)

5 + steps(t)([]) + 9 ∗ 2n + 2n+1 +
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

= (reorder)

5 +

(
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

)
+ steps(t)([]) + 9 ∗ 2n + 2n+1

= (rewrite as unary sum)

5 +

(
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′) +
0≤ |bs′ | ≤0∑
bs′∈B∗

steps(t)(bs′)

)
+ 9 ∗ 2n + 2n+1

= (merge sums)

5 +

(
0≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

)
+ 9 ∗ 2n + 2n+1

= (definition of O)(
0≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

)
+ O(2n)

□

24

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

C Proof Details for the No Shortcuts Lemma
The proof of Lemma 5.13 rely on the fact that any n-standard predicate has a canonical form. Section C.1 disseminate canonical

predicates, whilst Section C.2 proves Lemma 5.13.

C.1 Canonical Predicates
The decision tree model (Definition 5.2) captures the interaction between a given predicate P and its point p. The interior nodes
correspond to those places where P queries p, whilst the leaves represent answers ultimately conferred from the dialogue

between the predicate and its point.

The abstract nature of the decision tree model means that concrete syntactic structure of the predicate is lost. Thus we

cannot hope to reconstruct a particular predicate from its model. Indeed many syntactically distinct predicates may share the

same model. However, we can construct some predicate from a given model, namely, the canonical predicate. Intuitively, the
canonical predicate P ′ of P is a predicate which exhibits the same dialogue as P for every (valid) point.

LetU(P) := bs 7→ T (P)(bs).1 denote the procedure for constructing an untimed decision tree of a given predicate P .

Definition C.1 (Canonical predicate). A canonical predicate P ′ of an n-standard predicate P is itself an n-standard predicate

whose body (syntactically) consists entirely of let-bindings of point applications and whose continuation is either another

let-expression of the same form or return b for some boolean b. Moreover, P ′ exhibits the same dialogue as P , that is for all
bs ∈ B∗ such that |bs | ≤ n that

U(P)(bs) = U(P ′)(bs)

Next we define a procedure for constructing canonical predicate of any given n-standard predicate.

Definition C.2 (Normalisation procedure for predicates). The meta-procedure norm takes as input an n-standard untimed

decision tree, and outputs a program whose type is Point → Bool, which is exactly the type of predicates. The procedure

makes use of an auxiliary procedure body to generate the predicate body.

norm : (B∗ ⇀ Lab) → Val

norm(t) := λpPoint.body(t, [], p)

body : (B∗ ⇀ Lab) × B∗ × Val→ Comp

body(t, bs, p) :=

return b t(bs) =!b

let b← p i in
if b then body(t, true :: bs, p)
else body(t, false :: bs, p)

if t(bs) =?i

As convenient notation we write norm(P) to mean norm(bs 7→ U(P)(bs)). Next we show that the meta-procedure norm
produces canonical predicates.

Lemma C.3. Suppose P is an n-standard predicate then P ′ := norm(P) is an n-standard predicate such that for all bs ∈ B∗,
|bs | ≤ n

U(P)(bs) = U(P)(bs′)

Proof. By induction on n and body.
□

Lemma C.4. The procedure norm generates canonical predicates.

Proof. First observe that the syntax produced by the body procedure of norm conforms with the syntactic restrictions of

canonical predicates (Definition C.1). The rest follows as by Lemma C.3. □

C.2 No Shortcuts
We now have the necessary machinery to show that every n-count program in λb has at least exponential time complexity.

The following lemma is a copy of Lemma 5.13.

Lemma C.5. Let P be an n-standard predicate. Suppose C is an n-count program, then C must apply P to at least 2n distinct
n-points.

25

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

Conference’17, July 2017, Washington, DC, USA Daniel Hillerström, Sam Lindley, and John Longley

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

Proof. Proof by contradiction. Pick a boolean sequence bs ∈ Bn. Suppose there exists an n-count program C which does not

construct the critical point pc corresponding to bs. Let b be the answer yielded by P p. Now construct a predicate P ′ which
yields the same answers as P except that at pc it yields ¬b. Such a predicate can be constructed by negating b in the untimed

decision tree model of P , i.e.

t ′ := bs′ 7→

{
¬b if bs = bs′

U(P)(bs′) otherwise

Then P ′ = norm(t ′) constructs a canonical predicate, whose count is either one less or one more than that of P , that is at bs we
have

|C(P ′)(bs) − C(P)(bs)| = 1

because [] ⊏ bs we further obtain that |C(P ′)([]) − C(P)([])| = 1. Now there are two cases to consider:

1. If C P = C P ′ then C cannot be an n-count program, because C(P)([]) , C(P ′)([]), which contradicts the assumption.

2. If C P , C P ′ then we continue to reason about the length of the reduction sequences arising from applications of P and

P ′.

Lemma C.6. Let F [−] be any multi-hole context in C such that F [P] = C P and the type of F [P] is either Nat or Bool. If
F [P] {m return V then F [P ′] {∗ return V where the type of V is either Nat or Bool.

Proof. Proof by induction on the length of the reduction sequence, m.

Base step We have that m = 0 which implies F [P] {0 return V from which it follows that F [−] is simply return V ,
thus it follows immediately that F [P ′] {0 return V .

Induction step We have that m = 1 +m′. The induction hypothesis is

∀F .F [P] {m′ return V implies F [P ′] {∗ return V .

There are two cases to consider depending on whether applications of P occur in F .

Case F [P] is not an application of P . By assumption there is at least one reduction step, unroll this step to obtain

F [−] { F ′[−] {m′ return V

Now plug in P ′ and then the result follows by a single application of the induction hypothesis.

Case F [P] is an application of P . It must be that P is applied to values of type Point. Moreover by assumption, we

know that denotation of those values are distinct from the critical point pc . Now write F [P] = G[P, P p[P]] such that

the first component of G tracks residuals of P and the second component focuses on the expression in evaluation

position, which in our particular case is an application of P to some point p in which P may occur again. We need to

show that

G[P, P p[P]] { G[P, return W] { return V
for someW : Bool. Looking at the reduction sequence modulo G[P,−], we have that

P p[P] {+ F0[p[P] i0] { F0[return V0] {
+ F1[p[P] i1] { · · · {+ returnW ,

where each reduction step is justified by the untimed decision tree model of P . From this we can deduce that

G[P, P p[P]] {+ G[P, return W] {∗ return V

where the last step follows by the induction hypothesis and V : Bool. Now, we argue that the above reduction
sequence is tracked by G[P ′,−]. The n-standardness of P ′ guarantees that it contains n queries, and moreover, since

the decision tree model for P ′ is the same as P except for at one leaf, we know that the queries appear the in same

order, so by appeal to the decision tree for P ′ we obtain that

P ′ p[P ′] {+ F ′
0
[p[P ′] i0]

The term in evaluation position corresponds exactly to the first query node in the decision tree model. Now we can

apply the induction hypothesis to obtain

F ′
0
[p[P ′] i0] {∗ F ′0 [return V0]

The value V0 is exactly the same answer to p i0 as P obtained. Now there are two cases to consider depending on the

value of n. If n = 1 then by the 1-standardness of P ′ we know that there will be no further queries, and it ultimately

yields the same W as P p, because by assumption p , pc . Otherwise if n > 1 then there must be further queries, and

in particular, those queries must occur in the same order as those of P . Thus by the n-standardness of P ′ we get

F ′
0
[return V0] {

+ F ′
1
[p[P ′] i1]

26

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

Asymptotic Improvement with Effect Handlers Conference’17, July 2017, Washington, DC, USA

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

Yet again we find ourselves in a position where we can again apply the induction hypothesis to obtain an answer. By

repeating this argument n times, we get that P ′ p eventually yields W , we can lift this back into the outer context to

obtain

G[P ′, P ′ p[P ′]] {+ G[P ′, return W]
and by the induction hypothesis, we get that

G[P ′, return W] {∗ return V .

□

Recall that C P , C P ′, but by the Context Lemma C.6 both C P and C P ′ reduce to the same value which contradicts the

initial assumption.

□

D Proof Details for the No Sharing Lemma
The following lemma is a copy of Lemma 5.18.

Lemma D.1. Suppose P is an n-standard predicate and C is an n-count program, and let p0 and p1 be distinct n-points, then the
predicate applications P p0 and P p1 within C have disjoint threads.

Proof. Let T0 = Th(P p0,PJp0K) and T1 = Th(P p1,PJp1K) be the threads arising from the two distinct predicate applications.

Suppose, without loss of generality, that P is applied to p0 before p1, that is C P {+ E0[P p0] {+ E1[P p1] {+ · · · which by

Lemma 5.16 implies that T0 starts before T1. There are now two possible cases to consider.

1. T0 finishes before T1 starts. It follows immediately that T0 and T1 are disjoint.
2. T1 starts in between the sections of T0. We now argue that T1 must finish before evaluation of T0 can continue. Suppose

for any i < n that the i-th query qi starts T1, i.e

Ei[p0 qi] { Ei[E ′[P p1]]

then by the ‘n-ness’ of C, P , and p1 and since the reduction relation{ is deterministic it follows that E ′ reduces to a

boolean value W which is plugged into the continuation of Ei[−]

Ei[p0 qi] { Ei[E ′[P p1]] {+ Ei[return W]

Thus, T1 must finish executing before evaluation of T0 can resume.

□

27

	Abstract
	1 Introduction
	2 Effect Handlers Primer
	3 Calculi
	3.1 Base Calculus
	3.2 Handler Calculus

	4 Abstract Machine Semantics
	4.1 Base Machine
	4.2 Handler Machine
	4.3 Realisability and Asymptotic Complexity

	5 Efficient Generic Search
	5.1 Predicates and Points
	5.2 Effectful Generic Counting
	5.3 Predicates, Points, and their Models, Formally
	5.4 Specification of Generic Counting
	5.5 Complexity of Effectful Generic Counting
	5.6 Pure Generic Counting
	5.7 No Shortcuts
	5.8 No Sharing
	5.9 Complexity of Pure Generic Counting

	6 Robustness
	7 Experiments
	8 Conclusions and Future Work
	Acknowledgments
	References
	A Proof Details for Correctness of the Base Abstract Machine
	B Proof Details for the Complexity of Effectful Generic Counting
	C Proof Details for the No Shortcuts Lemma
	C.1 Canonical Predicates
	C.2 No Shortcuts

	D Proof Details for the No Sharing Lemma

