Asymptotic Improvement with Effect Handlers

Daniel Hillerström The University of Edinburgh UK daniel.hillerstrom@ed.ac.uk Sam Lindley The University of Edinburgh and Imperial College London UK sam.lindley@ed.ac.uk John Longley The University of Edinburgh UK jrl@staffmail.ed.ac.uk 56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Abstract

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

As Filinski showed in the 1990s, delimited control operators can express all monadic effects. Plotkin and Pretnar's effect handlers offer a modular form of delimited control providing a uniform mechanism for concisely implementing features ranging from async/await to probabilistic programming.

We study the fundamental efficiency of effect handlers. Specifically, we show that effect handlers enable an asymptotic improvement in runtime complexity for a certain class of programs. We consider the *generic search* problem and define a pure PCF-like base language λ_b and its extension with effect handlers λ_h . We show that λ_h admits an asymptotically more efficient implementation of generic search than any λ_b implementation of generic search.

To our knowledge this result is the first of its kind for control operators.

1 Introduction

In today's programming languages we find a wealth of powerful constructs and features — exceptions, higher-order store, dynamic method dispatch, coroutining, explicit continuations, concurrency features, Lisp-style 'quote' and so on — which may be present or absent in various combinations in any given language. There are of course many important pragmatic and stylistic differences between languages, but here we are concerned with whether languages may differ more essentially in their expressive power, according to the selection of features they contain.

One can interpret this question in various ways. For instance, Felleisen [13] considers the question of whether a language \mathcal{L} admits a translation into a sublanguage \mathcal{L}' in a way which respects not only the behaviour of programs but also aspects of their (global or local) syntactic structure. If the translation of some \mathcal{L} -program into \mathcal{L}' requires a complete global restructuring, we may say that \mathcal{L}' is in some way less expressive than \mathcal{L} . In the present paper, however, we have in mind even more fundamental expressivity differences that would not be bridged even if whole-program translations were admitted. These fall under two headings.

- Computability: Are there operations of type A that are programmable in L but not expressible at all in L'?
- 2. *Complexity*: Are there operations programmable in \mathcal{L} with some asymptotic runtime bound (e.g. $O(n^2)$) that cannot be achieved in \mathcal{L}' ?

We may also ask: are there examples of *natural*, *practically useful* operations that manifest such differences? If so, this might be considered as a significant advantage of \mathcal{L} over \mathcal{L}' .

If the 'operations' we are asking about are ordinary firstorder functions - that is, both their inputs and outputs are of ground type (strings, arbitrary-size integers etc.) - then the situation is easily summarised. At such types, all reasonable languages give rise to the same class of programmable functions, namely the Church-Turing computable ones. As for complexity, the runtime of a program is typically analysed with respect to some cost model for basic instructions (e.g. one unit of time per array access). Although the realism of such cost models in the asymptotic limit can be questioned (see, e.g., [23, Section 2.6]), it is broadly taken as read that such models are equally applicable whatever programming language we are working with, and moreover that all respectable languages can represent all algorithms of interest; thus, one does not expect the best achievable asymptotic run-time for a typical algorithm (say in number theory or graph theory) to be sensitive to the choice of programming language, except perhaps in marginal cases.

The situation changes radically, however, if we consider *higher-order* operations: programmable operations whose inputs may themselves be programmable operations. Here it turns out that both what is computable and the efficiency with which it can be computed can be highly sensitive to the selection of language features present. This is in fact true more widely for *abstract data types*, of which higher-order types can be seen as a special case: a higher-order value will of course be represented within the machine as ground data, but a program within the language typically has no access to this internal representation, and can interact with the value only by applying it to an argument.

Most of the work in this area to date has focused on computability differences. One of the best known examples is the *parallel if* operation which is computable in a language with parallel evaluation but not in a typical 'sequential' programming language [35]. It is also well known that the presence of control features or local state enables observational distinctions that cannot be made in a purely functional setting: for instance, there are programs involving 'call/cc' that detect the order in which a (call-by-name) '+' operation evaluates its arguments [9]. Such operations are 'non-functional' in the sense that their output is not determined solely by the extension of their input ; however, there are also programs

167

168

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

with 'functional' behaviour that can be implemented with 111112 control or local state but not without them [28]. More re-113 cent results have exhibited differences lower down in the language expressivity spectrum: for instance, in a purely 114 115 functional setting à la Haskell, the expressive power of recursion increases strictly with its type level [30], and there are 116 117 natural operations computable by (low-order) recursion but not by (even high-order) iteration [29]. Much of this territory, 118 119 including the mathematical theory of some of the natural 120 notions of higher-order computability that arise in this way, 121 is mapped out by Longley and Normann [31].

Relatively few results of this character have so far been 122 established on the complexity side. Pippenger [33] gives 123 an example of an 'online' operation on infinite sequences 124 125 of atomic symbols (essentially a function from streams to streams) such that the first *n* output symbols can be produced 126 127 within time O(n) if one is working in an 'impure' version of Lisp (in which mutation of 'cons' pairs is admitted), but 128 129 with a worst-case runtime no better than $\Omega(n \log n)$ for any 130 implementation in pure Lisp (without such mutation). This 131 example was reconsidered by Bird et al. [8] who showed that 132 the same speedup can be achieved in a pure language by using lazy evaluation. Jones [20] explores the approach of 133 134 manifesting expressivity and efficiency differences between 135 certain languages by artificially restricting attention to 'cons-136 free' programs; in this setting, the classes of representable 137 first-order functions for the various languages are found to coincide with some well-known complexity classes. 138

The purpose of the present paper is to give a clear ex-139 ample of such an inherent complexity difference higher up 140 in the expressivity spectrum. Specifically, we consider the 141 142 following generic search problem, parametric in n: given a boolean-valued predicate *P* on the space \mathbb{B}^n of boolean vec-143 tors of length n, return the number of such vectors p for 144 which P(p) = true. We shall consider boolean vectors of any 145 length to be represented by the type Nat \rightarrow Bool; thus, for 146 147 each *n*, we are asking for an implementation of a certain 148 third-order operation

 $\operatorname{count}_n : ((\operatorname{Nat}_n \to \operatorname{Bool}) \to \operatorname{Bool}) \to \operatorname{Nat}$

149

150

A naive implementation strategy, supported by any reason-151 able language, is simply to apply *P* to each of the 2^n vectors 152 153 in turn. A much less obvious, but still purely 'functional', 154 approach due to Berger [5] achieves the effect of 'pruned 155 search' where the predicate admits this (serving as a warning that counter-intuitive phenomena can arise in this territory). 156 Nonetheless, under a mild condition on P (namely that it 157 158 must inspect all *n* components of the given vector before returning), both these approaches will have a $\Omega(n2^n)$ run-159 time. Moreover, we shall show that in a typical call-by-value 160 language without advanced control features, one cannot 161 improve on this: any implementation of count_n must nec-162 essarily take time $\Omega(n2^n)$, even when the predicates *P* are 163 chosen to be 'as simple as possible'. On the other hand, if 164 165

we extend our language with a feature such as *effect handlers* (see Section 2 below), it becomes possible to bring the runtime down to $O(2^n)$: an asymptotic gain of a factor of *n*.

In order to make this efficiency difference stand out as 169 clearly as possible, we have resorted to some slightly ar-170 tificial constraints in the way we set up our scenario. Of 171 course, even one illustration of this phenomenon suffices 172 in principle to establish the existence of the efficiency gap 173 in question; however, it will also be clear from our analysis 174 that, in spite of the technical restrictions, the phenomenon 175 we are exhibiting is actually quite general. For instance, if 176 the problem of counting all solutions to *P* is replaced by that 177 of returning the first solution found (if one exists), it will be 178 clear that an order *n* speedup can still typically be expected. 179

The idea behind the speedup is easily explained. Suppose for example n = 4, and suppose that the predicate P always inspects the components of its argument in the order 0, 1, 2, 3. A naive implementation of count₄ might start by applying the given *P* to $p_0 = (true, true, true, true)$, and then to $p_1 = (true, true, true, false)$. Clearly there is some duplication here: the computations of $P p_0$ and $P p_1$ will proceed identically up to the point where the value of the final component is requested. What we would like to do, then, is to record the state of the computation of $P p_0$ at just this point, so that we can later resume this computation with false supplied as the final component value in order to obtain the value of $P p_1$. (Similarly for all other internal nodes in the evident binary tree of boolean vectors.) Of course, this 'backup' approach would be standardly applied if one were implementing a bespoke search operation for some particu*lar* choice of *P* (corresponding, say, to the n-queens problem); but to apply this idea of resuming previous subcomputations in the generic setting (that is, uniformly in *P*) requires some special language feature such as effect handlers or multi-use continuations. One could also obviate the need for such a feature by choosing to present the predicate P in some other way, but from our present perspective this would be to move the goalposts: our intention is precisely to show that our languages differ in an essential way as regards their power to *manipulate data of type* (Nat \rightarrow Bool) \rightarrow Bool.

The above idea will already be familiar, at least informally, to many who have worked with effect handlers or explicit continuations, and was explicitly presented in a closely related context by Bauer [1]; but our contribution here is to formulate and prove a precise mathematical theorem that pins down the efficiency difference in question. A general mathematical theory of the expressive power of effect handlers would be perhaps best articulated within the framework of game semantics; since in the present paper our focus is on one specific example of the difference, we shall work concretely and operationally with the languages themselves. In the first instance, we formulate our results as a comparison between a purely functional base language (a version of call-by-value PCF [35]) and an extension of this with effect

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

221 handlers; we then easily observe that our results are unaf-222 fected if the base language is augmented with other features 223 such as local mutable store. As regards the runtime estimates, we work with a CEK-style abstract machine model for our 224 225 languages which, we claim, offers a realistic model of program execution time for typical real-world implementations. 226

The rest of the paper is structured as follows. 227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

251

252

253

254

255

259

- Section 2 provides an introduction to effect handlers as a programming abstraction.
- Section 3 presents a PCF-like language λ_b and its extension λ_h with effect handlers.
- Section 4 defines abstract machines for λ_b and λ_h .
- Section 5 formally states and proves the complexity of generic search in $\lambda_{\rm b}$ ($\Omega(n2^n)$) and $\lambda_{\rm b}$ ($O(2^n)$).
- Section 6 outlines how the result scales to extensions of the base language with features such as state.
 - Section 7 empirically evaluates implementations of generic search based on $\lambda_{\rm b}$ and $\lambda_{\rm h}$ in Standard ML.
 - Section 8 concludes.

The languages λ_b and λ_h are rather minimal variants of previous work - we only include the machinery needed for illustrating the generic search efficiency phenomenon. Full proofs of our main complexity results are available in the appendices of the anonymised supplementary material.

2 **Effect Handlers Primer**

Effect handlers were originally studied as a theoretical means 250 to provide a semantics for exception handling in the setting of algebraic effects [36, 37]. Subsequently they have emerged as a practical programming abstraction for modular effectful programming [3, 11, 18, 21, 22, 24, 27]. In this section we give a short introduction to effect handlers. For a thorough introduction to programming with effect handlers, we rec-256 ommend the tutorial by Pretnar [38], and as an introduction 257 to the mathematical foundations of handlers, we refer the 258 reader to the founding paper by Plotkin and Pretnar [37] and the excellent tutorial paper by Bauer [2]. 260

Viewed through the lens of universal algebra, an algebraic 261 effect is given by a signature Σ of finitary *operation symbols* 262 defined over some nonempty carrier set A, along with an 263 equational theory that describes the properties of the opera-264 tions [36]. An example of an algebraic effect is nondetermin-265 ism, whose signature consists of a single nondeterministic 266 choice operation: $\Sigma := \{\text{Branch} : 1 \rightarrow \text{Bool}\}$. The operation 267 takes a single parameter of type unit and ultimately pro-268 duces a boolean value. The pragmatic programmatic view of 269 algebraic effects differs from the original development as no 270 implementation accounts for equations over operations yet. 271

As an introductory programmatic example, we will show-272 case a use of the operation Branch by modelling a coin toss. 273 Suppose we have a data type Toss := Heads | Tails, then 274

in our programming notation (introduced formally in Section 3.2) we may implement a coin toss as follows.

toss $\langle \rangle$ = **if do** Branch $\langle \rangle$ **then inl** Heads **else inr** Tails

From the type signature it is clear that the computation returns a value of type Toss. It is not clear from the signature of toss whether it performs an effect. From looking at the definition, it evidently performs the operation Branch with argument $\langle \rangle$ using the **do**-invocation form. The result of the operation determines whether the computation returns either Heads or Tails (with the appropriate injections). Systems such as Frank [27], Helium [7], Koka [24], and Links [18] include type-and-effect systems which track the use of effectful operations. Whilst current iterations of systems such as Eff [3] and Multicore OCaml [11] elect not to include an effect system. Our language is closer to the latter two.

We may, in the style of Lindley [26], view an effectful computation as a tree, where the interior nodes correspond to operation invocations and the leaves correspond to return values. The computation tree for toss is as follows.

It models interaction with the environment. The operation Branch can be viewed as a *query* for which the *response* is either true or false. The response is provided by an effect handler. As an example consider the following handler which enumerates the possible outcomes of a coin toss.

handle toss
$$\langle \rangle$$
 with
val $x \mapsto [x]$
Branch $\langle \rangle r \mapsto r$ true $\# r$ false

The handle-construct generalises the exceptional syntax of Benton and Kennedy [4]. A handler has a success clause and an operation clause. The success clause determines how to interpret the return value of toss. It lifts the return value into a singleton list. The operation clause determines how to interpret occurrences of Branch in toss. It provides access to the argument of Branch (which is unit) and its resumption, r. The resumption is a first-class delimited continuation which captures the remainder of the toss computation from the invocation of Branch up to its nearest enclosing handler.

Applying r to true resumes evaluation of toss via the true branch, returning Heads and causing the success clause of the handler to be invoked; thus the result of r true is [inl Heads]. Evaluation continues in the operation clause, meaning that *r* is applied again, but this time to false, which causes evaluation to resume in toss via the false branch. By the same reasoning, the value of *r* false is [**inr** Tails], which is concatenated with the result of the true branch; hence the handler ultimately returns [inl Heads, inr Tails].

331 3 Calculi

332

333

334

335

341

342

In this section, we present our base language λ_b and its extension with effect handlers λ_h .

3.1 Base Calculus

The base calculus λ_b is a fine-grain call-by-value [25] variation of PCF [35]. Fine-grain call-by-value is similar to Anormal form [16] in that every intermediate computation is named, but unlike A-normal form is closed under reduction.

The types of λ_b are given by the following grammar.

$$A, B, C, D ::=$$
Nat $| 1 | A \rightarrow B | A \times B | A + B$

The ground types are Nat and 1 which classify natural num-343 344 ber values and the unit value, respectively. We write ground A 345 to assert that type A is a ground type. The function type 346 $A \rightarrow B$ represents functions that map values of type A to 347 values of type *B*. The binary product type $A \times B$ represents 348 a pair of values whose first and second components have 349 types A and B respectively. The sum type $A \times B$ represents 350 tagged values of either type A or B. Type environments Γ 351 map term variables to their types.

We let *n* range over natural numbers and *c* range over primitive operations on natural numbers (+, -, =). We generally use lowercase letters *x*, *y*, *z* and more to denote term variables. By convention we use *f*, *g*, and *h* for variables of function type, *i* and *j* for variables of type Nat, and *r* and *k* to denote resumptions and continuations, with the exception that we will use uppercase *P* to denote predicates.

The typing rules are given in Figure 1. We require two typing judgements: one for values and the other for computations. The judgement $\Gamma \vdash \Box : A$ states that a \Box -term has type *A* under type environment Γ , where \Box is either a value term (*V*) or a computation term (*M*). The constants have the following types.

 $365 \\ 366 \quad \{(+), (-)\} : \langle \mathsf{Nat}, \mathsf{Nat} \rangle \to \mathsf{Nat} \quad (=) : \langle \mathsf{Nat}, \mathsf{Nat} \rangle \to \mathsf{Bool}$

367 Value terms comprise variables (*x*), the unit value ($\langle \rangle$), nat-368 ural number literals (*n*), primitive constants (*c*), lambda abstraction (λx^A . M), recursion (**rec** $f^A x.M$), pairs ($\langle V, W \rangle$), 369 left ((**inl** V)^{*B*}) and right ((**inr** W)^{*A*}) injections. We assume 370 371 an efficient representation of naturals (e.g. naturals occupy a machine word) such that constants ($c \in \{+, -, =\}$) have 372 373 efficient realisations $\lceil c \rceil$. All elimination forms are computa-374 tion terms. Abstraction is eliminated using application (V W). The product eliminator (let $\langle x, y \rangle = V$ in *N*) splits a pair 375 V into its constituents and binds them to x and y, respec-376 tively. Sums are eliminated by a case split (case V {inl $x \mapsto$ 377 M; inr $\gamma \mapsto N$). A trivial computation (return V) returns 378 value V. The sequencing expression (let $x \leftarrow M$ in N) 379 evaluates M and binds the result value to x in N. 380

For convenience we often write code in direct-style assuming the standard left-to-right call-by-value elaboration into fine-grain call-by-value [16]. For example, assuming f, g, hare functions, and a is a bound variable, then the expression Daniel Hillerström, Sam Lindley, and John Longley

386

387

388

389

390 391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

$$(f(ha) + g\langle\rangle)$$
 is syntactic sugar for:
let $x \leftarrow ha$ in let $y \leftarrow fx$ in let $z \leftarrow g\langle\rangle$ in $y + z$

We use the standard encoding of booleans as sums:

Bool := 1 + 1 true := **inl** $\langle \rangle$ false := **inr** $\langle \rangle$

if V then M else N := case V {inl $\langle \rangle \mapsto M$; inr $\langle \rangle \mapsto N$ }

We make use of standard syntactic sugar for pattern matching. For instance, for suspended computations we write

$$\lambda\langle\rangle.M := \lambda x^1.M, \text{ where } x \notin FV(M)$$

and more generally if the binder has a type other than 1, then we write

$$\lambda_{-}^{A}.M := \lambda x^{A}.M$$
, where $x \notin FV(M)$

We elide type annotations when clear from context.

We give a small-step operational semantics for $\lambda_{\rm b}$ with *evaluation contexts* in the style of Felleisen [12].

$$(\lambda x^{A}. M)V \rightsquigarrow M[V/x]$$

$$(\operatorname{rec} f^{A} x. M)V \rightsquigarrow M[(\operatorname{rec} f^{A} x. M)/f, V/x]$$

$$c V \rightsquigarrow \operatorname{return} (\ulcorner c \urcorner (V))$$

$$\operatorname{let} \langle x; y \rangle = \langle V; W \rangle \operatorname{in} N \rightsquigarrow N[V/x, W/y]$$

$$\operatorname{case} (\operatorname{inl} V)^{B} \{\operatorname{inl} x \mapsto M; \\ \operatorname{inr} y \mapsto N\} \rightsquigarrow M[V/x]$$

$$\operatorname{case} (\operatorname{inr} V)^{A} \{\operatorname{inl} x \mapsto M; \\ \operatorname{inr} y \mapsto N\} \rightsquigarrow N[V/y]$$

$$\operatorname{let} x \leftarrow \operatorname{return} V \operatorname{in} N \rightsquigarrow N[V/x]$$

$$\mathcal{E}[M] \rightsquigarrow \mathcal{E}[N], \quad \operatorname{if} M \rightsquigarrow N$$

Evaluation contexts $\mathcal{E} ::= [] | \text{let } x \leftarrow \mathcal{E} \text{ in } N$

We write M[V/x] for M with V substituted for x. The reduction relation \rightsquigarrow is defined on computation terms. The statement $M \rightsquigarrow N$ reads: term M reduces to term N in one step. We write R^+ for the transitive closure of relation R.

3.2 Handler Calculus

We now define λ_h as an extension of λ_b . First we define notation for operation symbols, signatures, and handler types.

Operation symbols
$$\ell \in \mathcal{L}$$
Signatures $\Sigma ::= \cdot \mid \{\ell : A \rightarrow B\} \cup \Sigma$ Handler types $F ::= C \Rightarrow D$

We assume a countably infinite set of operation symbols \mathcal{L} . An effect signature Σ is a map from operation symbols to their types, thus we assume that each operation symbol in a signature is distinct. An operation type $A \rightarrow B$ denotes an operation that takes an argument of type A and returns a result of type B. We write $dom(\Sigma) \subseteq \mathcal{L}$ for the set of operation symbols in a signature Σ . An effect handler type $C \Rightarrow D$ classifies effect handlers that transform computations of type C into computations of type D. Following Pretnar [38], we assume a global signature for every program.

The typing rules for λ_h are those of λ_b (Figure 1) plus three additional rules for operations, handling, and handlers given in Figure 2. The T-OP rule ensures that an operation invocation is only well-typed if the operation ℓ appears in the

Asymptotic Improvement with Effect Handlers

Values				Computations	
$\begin{array}{c} \text{T-Var} \\ x: A \in \Gamma \end{array}$	T-Unit	$\begin{array}{c} \text{T-Nat} \\ n \in \mathbb{N} \end{array}$	$\begin{array}{c} \text{T-Const} \\ c: A \to B \end{array}$	$\begin{array}{c} \text{T-App} \\ \Gamma \vdash V : A \longrightarrow B \\ \Gamma \vdash W : A \end{array}$	T-Split $\Gamma \vdash V : A \times B$ $\Gamma \land \gamma : A \lor B \vdash N : C$
$\overline{\Gamma \vdash x : A}$	$\overline{\Gamma \vdash \langle \rangle : 1}$	$\overline{\Gamma \vdash n : Nat}$	$\overline{\Gamma \vdash c : A \longrightarrow B}$	$\frac{\Gamma + W \cdot H}{\Gamma + V W : B}$	$\frac{\Gamma, x \cdot H, y \cdot D + N \cdot C}{\Gamma + \mathbf{let} \langle x, y \rangle = V \text{ in } N : C}$
$\frac{\text{T-LAM}}{\Gamma, x : A}$	⊢ <i>M</i> : <i>C</i>	$\frac{\text{T-Rec}}{\Gamma, f: A \to 0}$	$C, x : A \vdash M : C$	$\begin{array}{ll} \text{T-Case} \\ \Gamma \vdash V : A + B & \Gamma, \end{array}$	$x: A \vdash M: C$ $\Gamma, y: B \vdash N:$
$\Gamma \vdash \lambda x^{A}. N$	$A: A \to C$	$\Gamma \vdash \mathbf{rec} f^{A^{-}}$	$\xrightarrow{\to C} x. M : A \to C$	$\Gamma \vdash \mathbf{case} \ V \{\mathbf{i}\}$	nl $x \mapsto M$; inr $y \mapsto N$: <i>C</i>
$\begin{array}{c} \text{T-Prod} \\ \Gamma \vdash V : A \\ \Gamma \vdash W \cdot B \end{array}$	T-Inl Γ	$\vdash V: A$	T-INR $\Gamma \vdash W : B$	T-Return	T-Let
$\frac{1}{\Gamma + \langle V, W \rangle + A \times V}$	\overline{P} $\overline{\Gamma + (in)}$	$(V)^B \cdot A + B$	$\Gamma \downarrow (imm M)^A \downarrow A \downarrow$	$\Gamma \vdash V : A$	$\Gamma \vdash M : A \qquad \Gamma, x : A \vdash N :$
$I \vdash \langle v, w \rangle : A \times$	$D \qquad I \in (III)$	(V) : $A + D$	$1 \vdash (\mathbf{Inr} \ w) : A +$	$\Gamma \vdash \mathbf{return} \ V : A$	$\Gamma \vdash \mathbf{let} \ x \leftarrow M \ \mathbf{in} \ N : C$
			Figure 1. Typing	Rules for $\lambda_{\rm b}$	
				Handlers	
Computations				T-HANDLER	0
$\begin{array}{l} \text{T-Do} \\ (\ell : A \to B) \in \Sigma \end{array}$	$\Gamma \vdash V : A$	$\begin{array}{l} \text{T-Handle} \\ \Gamma \vdash M : C \end{array}$	$\Gamma \vdash H : C \Longrightarrow D$	$H^{\text{val}} = \{ \mathbf{val} \ x \mapsto M \}$ $[\Gamma, p_{\ell} : A_{\ell}, r_{\ell} : B_{\ell} -$	$[H^{\ell} = \{\ell \ p_{\ell} \ r_{\ell} \mapsto N_{\ell}\}]_{\ell \in dom(\Sigma)}$ $\rightarrow D \vdash N_{\ell} : D]_{(\ell; A_{\ell} \to B_{\ell}) \in \Sigma}$
$\Gamma \vdash \mathbf{do} \ell$	V:B	Γ ⊢ handle	\mathbf{W} with $H:D$	Γ, x	$: C \vdash M : D$
	· · ··-		,	Гн	$H: C \Rightarrow D$

effect signature Σ and the argument type *A* matches the type of the provided argument V. The result type B determines the type of the invocation. The T-HANDLE rule is straightforward. The T-HANDLER rule ensures that the bodies of the success 469 clause and the operation clauses all have the output type 470 D. The type of x in the value clause must match the input type *C*. The type of the parameter $p_{\ell}(A_{\ell})$ and resumption 472 r_{ℓ} ($B_{\ell} \rightarrow D$) in the operation clause H^{ℓ} is determined by the 473 signature for ℓ . The return type of r_{ℓ} is *D*, as the body of 474 the resumption will itself be handled by *H*. We write H^{ℓ} and 475 $H^{\rm val}$ for projecting success and operation clauses. 476

464

465

466

467

468

471

477

478

479

$H^{\ell} := \{\ell \ p \ r \mapsto M\},\$	where $\{\ell \ p \ r \mapsto M\} \in H$
$H^{\text{val}} := \{ \mathbf{val} \ x \mapsto M \},$	where $\{\mathbf{val} \ x \mapsto M\} \in H$

We extend the operational semantics to $\lambda_{\rm h}$.

480
481handle (return V) with
$$H \rightarrow N[V/x]$$
,
where $H^{val} = \{val \ x \mapsto N\}$ 481
482
483
483
483
484
484
484
485
486
486
486
487
487
487
487
487
488
487
489
489
489
489
489
480
489
480
480
480
480
480
481
481
481
482
482
483
483
484
484
484
485
485
486
487
487
487
488
487
489
489
489
489
480
480
480
480
481
481
481
481
482
482
483
483
484
484
484
484
484
484
485
484
484
485
486
486
487
487
487
488
488
489
489
489
489
480
480
480
480
480
481
481
481
481
481
481
482
482
483
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484

rule ause. The third rule replaces the corresponding lifting rule for λ_b . 491 Rather than augmenting evaluation contexts from $\lambda_{\rm b}$, we 492 493 introduce handler contexts. The separation between pure evaluation contexts \mathcal{E} and handler contexts \mathcal{H} guarantees 494 495

the second rule is deterministic, as otherwise it could pick an arbitrary handler in scope. With this separation, the second rule always picks the innermost handler.

519

520

521

522

523

524

525

526

527

528

529

530

531

532 533

534 535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

We now characterise normal forms and state the standard type soundness property of λ_h .

Definition 3.1 (Computation normal forms). We say that a computation term *N* is normal with respect to $\ell \in \Sigma$, if *N* is either of the form **return** *V*, or $\mathcal{E}[\mathbf{do} \ \ell \ W]$.

Theorem 3.2 (Type Soundness). *If* \vdash *M* : *C*, *then either there* exists $\vdash N$: C such that $M \rightsquigarrow^+ N$ and N is normal, or M diverges.

Abstract Machine Semantics 4

Thus far we have introduced the base calculus λ_b and its extension with effect handlers λ_h . For each calculus we have given a small-step operational semantics which uses a substitution model for evaluation. Whilst this model is semantically pleasing, it falls short of providing a realistic account of practical computation as substitution is an expensive operation. We now develop a more practical model of computation based on an abstract machine semantics.

4.1 Base Machine

We choose a *CEK*-style abstract machine semantics [14] for $\lambda_{\rm b}$ based on that of Hillerström and Lindley [18]. The CEK machine operates on configurations which are triples of the form $\langle M \mid y \mid \sigma \rangle$. The first component contains the computation currently being evaluated. The second component

contains the environment γ which binds free variables. The third component contains the continuation which instructs the machine how to proceed once evaluation of the current computation is complete. The syntax of abstract machine states is as follows.

556		
557	Configurations	$C \in Conf ::= \langle M \mid \gamma \mid \sigma \rangle$
558	Environments	$\gamma \in Env ::= \emptyset \mid \gamma[x \mapsto v]$
550	Machine values	$v, w \in Mval ::= x \mid n \mid c \mid \langle \rangle \mid \langle v, w \rangle$
773		$ (\mathbf{y}, \lambda \mathbf{x}^A, M) (\mathbf{y}, \mathbf{rec} f \mathbf{x}^A, M)$
560		$ (\mathbf{inl} v)^B (\mathbf{inr} w)^A$
561	Continuations	$\sigma \in \text{PureCont} := [1] (v, r, N) :: \sigma$
562	Continuations	$0 \in I \text{ unceont } = [] (f, x, W) 0$

563

564

565

566

567

568

569

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Values consist of function closures, constants, pairs, and left or right tagged values. A continuation is a stack of continuation frames. A continuation frame (γ, x, N) closes a let-binding **let** $x \leftarrow []$ **in** N over environment γ . We write [] for an empty continuation and $\phi :: \sigma$ for the result of pushing the frame ϕ onto σ . We use pattern matching to deconstruct continuations.

570 The abstract machine semantics is given in Figure 3. The 571 transition function is given by the \longrightarrow relation, which also 572 depends on an interpretation function [-] for value terms 573 and machine values. The machine is initialised by placing a 574 term in a configuration alongside the empty environment (\emptyset) 575 and identity continuation ([]). The rules (M-APP), (M-REC), 576 (M-CONST), (M-SPLIT), (M-CASEL), and (M-CASER) eliminate 577 values. The (M-LET) rule extends the current continuation 578 with let bindings. The (M-RETCONT) rule binds a returned 579 value if there is a pure continuation in the current contin-580 uation frame. Given an input of a well-typed closed com-581 putation term \vdash *M* : *A*, the machine will either diverge or 582 return a value of type A. A final state is given by a config-583 uration of the form $\langle \mathbf{return} \ V \mid \gamma \mid [] \rangle$ in which case the 584 final return value is given by the denotation $[V]_Y$ of V under 585 environment γ . We now make the correspondence between 586 operational semantics and abstract machine more precise. 587

Correctness The abstract machine faithfully simulates the operational semantics; most transitions correspond directly to β -reductions, but the M-LET-rule performs an administrative step to bring the computation *M* into evaluation position. We define an extension of the transition function \longrightarrow to capture administrative steps.

Definition 4.1 (Auxiliary reduction relations). We write \rightarrow_a for administrative steps, \rightarrow_β for β -steps, and \Longrightarrow for a sequence of steps of the form $\rightarrow_a^* \rightarrow_\beta$.

Theorem 4.2. There is a one-to-one mapping between reduction relation \rightarrow and transition function \Longrightarrow .

The proof is by induction on $M \rightsquigarrow N$, relying on an inverse map (-) from configurations to terms [18].

4.2 Handler Machine

We now enrich the λ_b machine to a λ_h machine. To support handlers we extend the syntax as follows.

		005
Configurations	$C \in Conf ::= \langle M \mid \gamma \mid \kappa \rangle$	610
Continuations	$\kappa \in \text{Cont} ::= [] \mid (\sigma, \chi) :: \kappa$	611
Handler closures	$\chi \in HClo ::= (\gamma, H)$	612
Machine values	$v \ w \in Mval := \cdots \mid v$	012
Machine values	$\gamma, \eta \in \mathcal{H}$	613

606

607

608

609

614

615

616 617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

The notion of configurations changes slightly as the continuation component is now occupied by a generalised continuation $\kappa \in \text{Cont}[18]$, meaning a machine continuation is now a list of pairs containing a pure continuation (as in the base machine) and a handler closure (χ). A handler closure consists of an environment and a handler definition, where the former binds the free variables that occur in the latter. The identity continuation is an empty pure continuation paired with the identity handler closure, i.e. $\kappa_0 := [([], (\emptyset, \{\text{val } x \mapsto x\}))]$. The machine values are augmented to contain handler closures as an operation invocation causes the topmost handler closure of the machine continuation to be reified (and bound to the resumption parameter in the operation clause).

The handler machine adds transition rules for handlers, and modifies (M-LET) and (M-RETCONT) from the base machine to account for the richer continuation structure. Figure 4 depicts the new and modified rules. The rule (M-HANDLE) pushes a the handler closure along with an empty pure continuation onto the continuation stack. The (M-LET) and (M-RetCont) are dual rules, as the former grows the pure continuation of the topmost continuation frame, and the latter shrinks the pure continuation. If the pure continuation is empty, then the (M-RETHANDLER) rule applies, which transfers control to the success clause of the current handler. If an operation is invoked, then the (M-HANDLE-OP) rule transfers control to the corresponding operation clause on the topmost handler and during the process it reifies the handler closure. Finally, the (M-RESUME) rule applies a reified handler closure, by pushing it onto the continuation stack. The handler machine has two possible final states: either it yields a value or it gets stuck on an unhandled operation.

Correctness Theorem 4.2 can mostly be repurposed for the handler machine as we need only recheck the cases for (M-LET) and (M-RETCONT) and check the cases for handlers.

4.3 Realisability and Asymptotic Complexity

The machine structures are readily realisable using standard persistent functional data structures. The pure and generalised continuations can be implemented using lists, which makes their augmentation operation (_ :: _) have time complexity O(1). This also holds true for pure continuations on the handler machine as augmenting the current pure continuation only requires reaching under the topmost handler closure. Environments, γ , can be realised using a map, making the complexity of extension and lookup be $O(\log |\gamma|)$ [32].

661 Transition function

М-Арр		$\langle V \ W \mid \gamma \mid \sigma \rangle \longrightarrow \langle M \mid \gamma'[x] \rangle$	$\mapsto \llbracket W \rrbracket \gamma] \mid \sigma \rangle,$	$\text{if} \llbracket V \rrbracket \gamma = (\gamma', \lambda x^A. M)$	
M-Rec		$\langle V \ W \mid \gamma \mid \sigma \rangle \longrightarrow \langle M \mid \gamma'[f] \rangle$	$\mapsto (\gamma', \mathbf{rec} f x.M), x \mapsto \llbracket W \rrbracket \gamma] \mid \sigma$	$\langle \gamma \rangle$, if $\llbracket V \rrbracket \gamma = (\gamma', \operatorname{rec} f x^A . M)$	
M-Const		$\langle V W \mid \gamma \mid \sigma \rangle \longrightarrow \langle \mathbf{return} (return) \rangle$	$ c^{\neg}(\llbracket V \rrbracket \gamma)) \mid \gamma \mid \sigma \rangle, $	$\inf \llbracket V \rrbracket \gamma = c$	
M-Split	$\langle \mathbf{let} \rangle \langle \mathbf{x} \rangle$	$, y \rangle = V \text{ in } N \mid \gamma \mid \sigma \rangle \longrightarrow \langle N \mid \gamma[x \vdash$	$\rightarrow v, y \mapsto w] \mid \sigma \rangle,$	$\text{if } \llbracket V \rrbracket \gamma = \langle v; w \rangle$	
M-CaseL	$\langle case \ V \{ inl \ x \mapsto M \}$	$l; \mathbf{inr} \ y \mapsto N\} \mid \gamma \mid \sigma \rangle \longrightarrow \langle M \mid \gamma[x \vdash$	$\rightarrow v$] σ >,	$ if \llbracket V \rrbracket \gamma = inl v $	
M-CASER	$\langle case \ V \{ inl \ x \mapsto M \}$	$l; \mathbf{inr} \ y \mapsto N \} \mid \gamma \mid \sigma \rangle \longrightarrow \langle N \mid \gamma[y \vdash$	$\rightarrow v$] σ >,	$ if \llbracket V \rrbracket \gamma = \mathbf{inr} \nu $	
M-Let	〈let	$x \leftarrow M \text{ in } N \mid \gamma \mid \sigma \rangle \longrightarrow \langle M \mid \gamma \mid (\gamma$	$\langle x, x, N \rangle :: \sigma \rangle$		
M-RetCont	(return	$V \mid \gamma \mid (\gamma', x, N) :: \sigma \rangle \longrightarrow \langle N \mid \gamma'[x +$	$\mapsto \llbracket V \rrbracket \gamma \rrbracket \mid \sigma \rangle$		
Value interpr	retation				
$\llbracket x \rrbracket y = y(x)$	$\llbracket n \rrbracket \gamma = n$	$[\lambda x^A . M] \gamma = (\gamma, \lambda x^A . M)$	$[\![\langle V; W \rangle]\!]_{Y} = \langle [\![V]\!]_{Y}; [\![W]\!]_{Y} \rangle$	$\llbracket (\mathbf{inl} \ V)^B \rrbracket Y = (\mathbf{inl} \ \llbracket V \rrbracket Y)^B$	
$\llbracket\langle\rangle\rrbracket\gamma=\langle\rangle$	$\llbracket c \rrbracket \gamma = c$	$\llbracket \mathbf{rec} f x^A . M \rrbracket \gamma = (\gamma, \mathbf{rec} f x^A . M)$	п(, , л», (г л», г л»),	$\llbracket (\mathbf{inr} \ V)^A \rrbracket \gamma = (\mathbf{inr} \ \llbracket V \rrbracket \gamma)^A$	
		Figure 3. Abstract Mach	ine Semantics for $\lambda_{\rm b}$		
Transition fu	inction				
M-Resume		$\langle V \psi \chi \kappa \rangle \longrightarrow \langle \text{return } V \rangle$	$W \mid \gamma \mid (\sigma, \chi) :: \kappa \rangle, \text{if } \llbracket V \rrbracket \gamma = (\sigma)$	$(\chi,\chi)^A$	
M-Let	$\langle \mathbf{let} \ x \leftarrow M$	$(\mathbf{in} \ N \mid \gamma \mid (\sigma, \chi) :: \kappa) \longrightarrow \langle M \mid \gamma \mid (0)$	$(\gamma, x, N) :: \sigma, \chi) :: \kappa$		
M-RetCont	\langle return $V \mid \gamma \mid$	$((\gamma', x, N) :: \sigma, \chi) :: \kappa) \longrightarrow \langle N \mid \gamma'[x]$	$\mapsto \llbracket V \rrbracket \gamma \rrbracket \mid (\sigma, \chi) :: \kappa \rangle$		
M-Handle	(han	dle M with $H \mid \gamma \mid \kappa \rangle \longrightarrow \langle M \mid \gamma \mid ([$	$[], (\gamma, H)) :: \kappa \rangle$		
M-RetHandli	er (return V	$\gamma \mid \gamma \mid ([], (\gamma', H)) :: \kappa \rightarrow \langle M \mid \gamma'[x]$	$\mapsto \llbracket V \rrbracket \gamma \rrbracket \mid \kappa \rangle, \text{ if } H^{\text{val}} = \{ \mathbf{val} \ x \end{cases}$	$x \mapsto M$	
M-Handle-Of	y (do ℓV	$V \mid \gamma \mid (\sigma, (\gamma', H)) :: \kappa \rangle \longrightarrow \langle M \mid \gamma'[p]$	$\mapsto \llbracket V \rrbracket \gamma, r \mapsto (\sigma, (\gamma', H)) \rrbracket \mid \kappa \rangle,$		
		if $\ell: A$	$\rightarrow B \in \Sigma$ and $H^{\ell} = \{\ell \ p \ r \mapsto M\}$		
		T1 1 1 1 1 1			

Figure 4. Abstract Machine Semantics for λ_h

The worst-case time complexity of the machine transi-tion relation \rightarrow is exhibited by rules which involve op-erations on the environment, since any other operation is constant time, hence the worst-time complexity of a transi-tion is $O(\log |\gamma|)$. The value interpretation function $[-]\gamma$ is defined structurally on values. Its worst-time complexity is exhibited by a nesting of pairs of variables $[\langle x_1, \ldots, x_n \rangle] Y$ which has complexity $O(n \log |y|)$.

Continuation copying On the handler machine the topmost continuation frame can be copied in constant time due to the persistent runtime and the layout of machine continuation. An alternative design would be to make the runtime non-persistent in which case copying a continuation frame $((\sigma, (\gamma, _)) :: _)$ would be a $O(|\sigma| + |\gamma|)$ time operation.

5 Efficient Generic Search

We now come to the crux of the paper. In this section we prove that λ_h accommodates some programmable operations with an asymptotic runtime bound that cannot be achieved in $\lambda_{\rm h}$. Since addition of effect handlers is the only difference between the two languages, we obtain as a corollary that a PCF-like programming language with effect handlers ex-hibits fundamentally more efficient programs than a pure PCF programming language. To obtain this result it suffices to find *one* efficient program in $\lambda_{\rm h}$ and show that *no* equiv-alent program in $\lambda_{\rm b}$ can achieve the same asymptotic com-plexity: we take generic search.

Generic search is a modular search procedure that finds solutions to a given search problem *P*. Generic search is agnostic to the specific instantiation of *P*, and as a result is applicable across a wide spectrum of domains. A variety of problems can be cast as instances of generic search; classic examples include solving Sudoku puzzles and *n*-Queens, whilst more esoteric examples include problems from game theory, graph theory, and exact real number integration [10, 39].

To simplify the presentation, we compute the number of solutions (generic count), rather than materialising all solutions (generic search). With little extra effort one can tweak the development to compute exact solutions.

Informally, a generic count program takes as input a predicate and returns the number of times the predicate yields true. A predicate returns a boolean value which signifies whether its input satisfies the predicate. As input a predicate takes a bit vector of length n > 0, which we represent as a first-order function Nat \rightarrow Bool. Ultimately we ask for implementations of a program, count, whose type is

$$\operatorname{count}_n : ((\operatorname{Nat}_n \to \operatorname{Bool}) \to \operatorname{Bool}) \to \operatorname{Nat}$$

where Nat_n admits elements of the set $\mathbb{N}_n := \{0, ..., n-1\}$. We often omit *n* indexes when clear from context; in particular they do not appear explicitly in the types of our programs as our formalism does not support dependent types.

Before giving the necessary formal machinery to state and prove the result, we first introduce the concepts informally.

771 5.1 Predicates and Points

Higher-order functions are the key to our modular formulation of generic search. We define a predicate of size *n* as a higher-order function which acts on points

$$Predicate_n := Point_n \rightarrow Bool$$

where *n* is a natural number and a point is a first-order function taking bounded natural numbers to boolean values:

$$Point_n := Nat_n \rightarrow Bool$$

Intuitively, a point implements a vector of boolean values where the natural number argument serves as an index into the vector. A point need not be a total function; indeed points we concern ourselves with are typically partial.

Examples Let us consider some simple examples of predicates and points. As a first example consider the constant point, $p_{true} := \lambda_{-}$.true. A slightly more interesting point is

$$p_2 := \lambda i.if \ i = 0$$
 then true else if $i = 1$ then false else $\perp i$

where $\perp := \operatorname{rec} f \ i.f \ i$ is the always-diverging point.

Now let us move onto some example predicates. We can give a whole family of constant true predicates. For example tt₀ returns true irrespective of its point.

$$tt_0 := \lambda p.true$$

Similarly we can define a variation, tt₂, which inspects two components of its point, but nevertheless returns true.

$$tt_2 := \lambda p. p 1; p 0; true$$

This predicate is slightly more interesting than tt_0 as it is defined only for points defined on Nat_n for $n \ge 2$. A predicate may inspect the same component of its point more than once

$$\operatorname{red}_1 := \lambda p.p0; p0$$

thus performing redundant work. Another class of predicates are divergent predicates such as

div₁ := **rec** *div p*.**if** *p* 0 **then** *div p* **else** false

which diverges whenever the 0-th index of the point yields true. Thus both $div_1 p_{true}$ and $div_1 p_2$ never terminate. Finally, let us consider a productive predicate which determines whether a point contains an odd number of true components.

$$\operatorname{odd}_n := \lambda p.\operatorname{fold} \otimes \operatorname{false}(\operatorname{map} p [0, \ldots, n-1])$$

where fold and map are the standard combinators on lists, and \otimes is the exclusive-or function. This predicate is only welldefined for n > 0. Applying odd₂ to p₂ yields true, whereas applying it to p_{true} yields false.

Predicate Models In essence a predicate is a decision pro-cedure, which participates in a 'dialogue' with a supplied point *p* : Point_n. The predicate may *query* (i.e. invoke) the components of p, and p then responds (i.e. returns). Ultimately this dialogue may answer whether the point satisfies the predicate. We can model the behaviour of a predicate as an unrooted binary decision tree characterising the predicate's interaction with *p*, where each interior node is labelled with a query ?i (for $i \in \mathbb{N}_n$) whose the left subtree corresponds

Figure 5 depicts models of some of the example predicates given above. The model of tt_0 is simply an unrooted leaf (Figure 5a). The model of div_1 is an infinite left-branching tree (Figure 5b). The model of odd_2 is a complete binary tree (Figure 5c). A further example is the unconditionally divergent predicate $div := \mathbf{rec} f p f p$ whose model is empty.

Restrictions To obtain a meaningful complexity result, we must constrain the predicates of interest. At one extreme, counting the size of a divergent predicate like div_0 is meaningless. At the other extreme, a constant predicate like t_0 exhibits no interesting computational characteristics; other constant predicates like t_2 inspect their provided point. Predicates like red₁ perform redundant work. Such redundancy can be eliminated via insertion of a local let binding.

- Thus we restrict attention to predicates that for n > 0
- 1. terminate when applied to any point *p*; and
- 2. inspect each bit 0 < i < n of *p* exactly once.

Of the examples so far, the ones satisfying the conditions are tt_2 and odd_n . Predicates satisfying 1 and 2 are exactly those whose models form complete binary trees (as in Figure 5c), which we call *n*-standard. We provide a rigorous definition of *n*-standard predicates in Section 5.3. To satisfy 1, we also require that points terminate on their defined domain Nat_n. We call a point that is defined on 0 < i < n an *n*-point.

5.2 Effectful Generic Counting

Having introduced predicates and points informally, we move onto presenting our effectful implementation of count. Our implementation is a variation of the example handler for non-deterministic computation that we gave in Section 2. The main idea is to implement points as non-deterministic computations using the Branch operation such that the handler may respond to every query twice by invoking the provided resumption with true and subsequently false. The key insight is that the resumption restarts computation at the invocation site of Branch, which means that prior computation need not be repeated. In other words, the resumption

Daniel Hillerström, Sam Lindley, and John Longley

Figure 5. Example Decision Tree Models

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

ensures that common bits of computations prior to any query are shared between both branches. We fix the effect signature $\Sigma := \{Branch : 1 \rightarrow Bool\}$. The algorithm is then expressed as follows.

885	$effcount: ((Nat \to Bool) \to Bool) \to Nat$
886	effcount P :=
887	handle $P(\lambda_{-}.do \text{ Branch } \langle \rangle)$ with
888	val $b \mapsto$ if b then return 1 else return 0
889	Branch $\langle \rangle r \mapsto $ let $x_{\text{true}} \leftarrow r \text{ true in}$
890	let $x_{\text{false}} \leftarrow r \text{ false in } x_{\text{true}} + x_{\text{false}}$

The handler applies predicate P to a single point defined 891 using Branch. The boolean return value is interpreted as a 892 single solution, whilst Branch is interpreted by alternately 893 supplying true and false to the resumption and summing the 894 895 results. A curious detail about effcount is that it works for all *n*-standard predicates without having to know the exact 896 897 value of *n*. This is because the point (λ .**do** Branch (λ) represents the superposition of all possible points. The sharing 898 enabled by the use of the resumption is exactly the 'magic' 899 we need to make it possible to implement generic counting 900 more efficiently in $\lambda_{\rm h}$ than in $\lambda_{\rm h}$. 901

5.3 Predicates, Points, and their Models, Formally

902

903

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

We now formalise the notions of *n*-standard predicates, points, and their models. We formalise the concepts using the operational semantics and abstract machine for the base language $\lambda_{\rm b}$. The reason being that it makes little sense to compare the runtime complexity of predicates which makes use effectful operations as they cannot be run on the base machine.

We begin by formalising the decision tree model of predicates. We first introduce the label set, Lab, consisting of queries and answers.

⁹¹³ ⁹¹⁴ *Notation.* We write $bs \sqsubset bs'$ to mean that list bs is a prefix ⁹¹⁵ of list bs'.

Definition 5.1 (label set). The label set Lab consists of queries
 parameterised by a natural number and answers parameterised by a boolean.

$$Lab := \{?n \mid n \in \mathbb{N}\} \cup \{!true, !false\}$$

We model a decision tree as a partial function from lists of booleans to labels; each boolean list specifies a cursor into the tree as a path from the root of the tree.

Definition 5.2 ((untimed) decision tree). A decision tree is a partial function $t : \mathbb{B}^* \rightarrow$ Lab from lists of booleans to node labels with the following properties:

- The domain of *t*, *dom*(*t*), is prefix closed.
- If t(bs) = !b then t(bs') is undefined for all bs' ⊐ bs. In other words answer nodes are always leaves.

Timed decision trees are decorated with timing data that records the number of machine steps.

Definition 5.3 (timed decision tree). A timed decision tree is a partial function $t : \mathbb{B}^* \rightarrow \text{Lab} \times \text{Nat}$ such that its first

projection $bs \mapsto t(bs).1$ is a decision tree. We write labs(t) for the first projection ($bs \mapsto t(bs).1$) and steps(t) for the second projection ($bs \mapsto t(bs).2$) of a timed decision tree.

We now relate predicates to decision trees by way of an interpretation of configurations as decision trees.

Notation. We write $a \simeq b$ for Kleene equality: either both a and b are undefined or both are defined and a = b.

Definition 5.4. The timed decision tree of a configuration is defined by the following equations

$$\mathcal{T}(\langle \mathbf{return true} \mid \gamma \mid []\rangle)[] = (!true, 0)$$

$$\mathcal{T}(\langle \mathbf{return false} \mid \gamma \mid []\rangle)[] = (!false, 0)$$

$$\mathcal{T}(\langle p V \mid \gamma \mid \sigma\rangle)[] = (?[[V]]\gamma, 0)$$

$$\mathcal{T}(\langle p V \mid \gamma \mid \sigma \rangle)(b :: bs) \simeq \mathcal{T}(\langle \mathbf{return} \ b \mid \gamma \mid \sigma \rangle) bs$$

$$\mathcal{T}(\langle M \mid \gamma \mid \sigma \rangle) bs \simeq I(\mathcal{T}(\langle M' \mid \gamma' \mid \sigma' \rangle) bs),$$

$$\text{if } \langle M \mid \gamma \mid \sigma \rangle \longrightarrow \langle M' \mid \gamma' \mid \sigma' \rangle$$

where $\mathcal{I}(\ell, s) = (\ell, s+1)$ and p is a distinguished free variable such that in all of the above equations $\gamma(p) = \gamma'(p) = p$. The decision tree of a computation term is obtained by placing it in the initial configuration, i.e. $\mathcal{T}(M) := \mathcal{T}(\langle M, \emptyset [p \mapsto p], \kappa_0 \rangle)$. The decision tree of a predicate P is $\mathcal{T}(Pp)$. Since pis a parametric variable, we shall omit p and simply write $\mathcal{T}(P)$ to mean $\mathcal{T}(Pp)$.

We can define a construction procedure, \mathcal{U} , for untimed decision trees using \mathcal{T} as follows: $\mathcal{U}(P) := bs \mapsto \mathcal{T}(P)(bs).1$.

Definition 5.5 (*n*-standard trees and *n*-standard predicates). For any n > 0 a decision tree *t* is said to be *n*-standard if

- The domain of *t* consists of all the lists whose length is at most *n*, i.e., dom(t) = {bs : B* | |bs| ≤ n}.
- Every leaf node in t is an answer node, i.e., for all bs ∈ dom(t) if |bs| = n then t(bs) = !b, for some b ∈ B.
- There are no repeated queries along any path in t: for all $bs, bs' \in dom(t), j \in \mathbb{N}$, if $bs \sqsubseteq bs'$ and t(bs) = t(bs') = ?j then bs = bs'.

A timed decision tree *t* is *n*-standard if its underlying untimed decision tree ($bs \mapsto t(bs).1$) is. A predicate *P* is said to be *n*-standard if its decision tree $\mathcal{T}(P)$ is an *n*-standard tree.

As alluded to in Section 5.1 *n*-standard decision tree models are exactly those that form a complete binary tree such that each path contains no repeated queries. The third condition in the definition requires only that there are no repeated queries along any path in the model; it does not impose a particular ordering on those queries.

We now move onto formalising points. Our model of points is only used for extensional reasoning about programs in the λ_b -language as we can reason intensionally about the single point used by effcount in the λ_h -language. As remarked in Section 5.1, points may in general be partial, however, the points that we shall consider all have the property, that they terminate whenever applied to an element of their defined domain (Nat_n for some n > 0).

996

997

998

999

1000

1001

1002

1003

1004

1005

1008

1009

1010

1013

1015

1016

1

1

1

1045

991 **Notation.** We write (-) : $\mathbb{N} \to \mathbb{N}$ at for the injection of natural numbers into value terms and $\mathbb{N}[-]$: Nat $\rightarrow \mathbb{N}$ for 992 993 its inverse. Similarly, we write $\mathbb{B}[-]$: Bool $\rightarrow \mathbb{B}$ for the denotation function for boolean value terms. 994

Definition 5.6 (*n*-point). For any n > 0 a closed value p: Point_n is said to be an *n*-point if

 $\forall i \in \mathbb{N}_n . p(|i|) \rightsquigarrow^* \mathbf{return} W.$

Semantically, we can think of any *n*-point as a total firstorder function of type $\mathbb{N}_n \to \mathbb{B}$. In fact, we shall take this function type to be the model of *n*-points. Since an *n*-point terminates on its defined domain, we can easily compute a model of it using the operational semantics. Definition 5.7 provides a procedure for computing the model of any *n*-point.

1006 **Definition 5.7.** The denotation of an *n*-point *p* is the realisation of its operational behaviour 1007

$$\mathbb{P}\llbracket - \rrbracket : (\operatorname{Nat}_n \to \operatorname{Bool}) \to (\mathbb{N}_n \to \mathbb{B}) \\ \mathbb{P}\llbracket p \rrbracket := j \in \mathbb{N}_n \mapsto \mathbb{B}\llbracket p(j) \rrbracket$$

Definition 5.8. Any two *n*-points p_0 and p_1 are *distinct* if 1011 their denotations differ, i.e. $\exists j \in \mathbb{N}_n . \mathbb{P}[\![p_0]\!] \ j \neq \mathbb{P}[\![p_1]\!] \ j$. 1012

5.4 Specification of Generic Counting 1014

We now formally define generic counting.

Definition 5.9. A counting function is a partial function of 1017 type $\mathbb{B}^* \to \mathbb{N}$. 1018

1019 As with the decision tree functions, the list argument to a 1020 counting function serves as a cursor into the model of the 1021 predicate. However, in in this case, the function computes 1022 the sum of the true answers in the subtree pointed to by the 1023 cursor. Thus in order to compute the sum of all true answers 1024 we apply the counting function to the empty list. The fol-1025 lowing definition provides a procedure for constructing a 1026 counting function for any predicate. 1027

Definition 5.10. The counting function for a configuration 1028 is defined by the following equations. 1029

1037 where *p* is a distinguished free variable such that in all of 1038 the above equations $\gamma(p) = \gamma'(p) = p$. As with \mathcal{T} , we write 1039 C(P) for C(P p). 1040

Definition 5.11 (generic count program). A program *C* : 1041 $((Nat \rightarrow Bool) \rightarrow Bool) \rightarrow Nat$ is said to be an *n*-count 1042 program if for every n-standard predicate P1043

1044
$$C P \rightsquigarrow^+$$
 return V, such that $\llbracket V \rrbracket = C(P)(\llbracket)$

5.5 Complexity of Effectful Generic Counting

In this section we formulate correctness and asymptotic bounds for running the effectful generic counting program effcount on a predicate P. Full proofs are in Appendix B.

A key feature of the proof is that we must alternate between intensional and extensional modes of reasoning. As effcount is a fixed program, we can reason intensionally about its behaviour and thereby directly observe machine transitions. But we must also consider the transitions of P. Since the code for *P* is unknown we cannot employ the same reasoning technique. Instead, we reason extensionally by making use of the fact that the timed decision tree model of P contains the exact number of transitions that P performs in each branch of computation.

Theorem 5.12. For all n > 0 and any *n*-standard predicate *P* it holds that

1. The program effcount is a generic counting program:

effcount $P \rightsquigarrow^+$ return V such that $\mathbb{N}[V] = C(P)([]) \le 2^n$

2. The runtime complexity of effcount *P* is given by:

$$\sum_{bs\in\mathbb{B}^*}^{|bs|\leq n} \operatorname{steps}(\mathcal{T}(P))(bs) + O(2^n)$$

Pure Generic Counting 5.6

We have shown that there exists an implementation of count in λ_h with a particular runtime bound. We now show that no implementation of count in λ_b can match this bound. To do so we exhibit two properties of the decision model:

- 1. there are no shortcuts, i.e. every leaf must be visited;
- 2. there can be no sharing of work amongst branches.

Together these two properties imply that every count program has least time complexity $\Omega(n2^n)$, because it must construct 2^n points, one for each leaf in the model, and apply the predicate once to each point. Due to the lack of sharing, each application of the predicate performs some redundant work as the path to two neighbouring leaves share *n* edges in the model. We formalise the first property in Section 5.7 and the second in Section 5.8. First, we give an example of a pure generic count program and discuss better alternatives. The following is a direct implementation of count in λ_b .

$$purecount_{n} : ((Nat_{n} \rightarrow Bool) \rightarrow Bool) \rightarrow Nat$$

$$purecount_{n} := \lambda P.count' n \perp$$

$$where \quad count' 0 \quad p := if \ P \ p \ then \ 1 \ else \ 0$$

$$count' (1 + n') \ p :=$$

$$count' (n' (\lambda i.if \ i = n' \ then \ true \ else \ p \ i)$$

$$+ count' n' (\lambda i.if \ i = n' \ then \ false \ else \ p \ i)$$

$$\perp_{-} := rec \ f \ i.f \ i$$

$$1089$$

$$1090$$

$$1090$$

$$1092$$

$$1093$$

$$1094$$

The implementation materialises 2^n points which are encoded using a standard functional linked list representation. The auxiliary function count' exhibits a recursion pattern reminiscent of the classic recursive definition of the Fibonacci function. The function is initially applied to the

1081

1082

1083

1084

1085

1086

1087

1095

1096

1097

1098

1099 1100

1101 divergent function \bot , which is partly used to seed the list 1102 generation, but also used to respond to queries $i \ge n$ such 1103 that they diverge. The base case of count' applies the predi-1104 cate *P* to the generated point.

1105 At this point the reader may wonder why we cannot simply use known continuation passing style (CPS) [19] or 1106 monadic [24] transforms of effect handlers, or implement an 1107 interpreter for effect handlers [18] in λ_b to achieve the shar-1108 1109 ing of computation. Such global implementation techniques are ruled out in our setting, because they would change the 1110 1111 type of count. For example, as any predicate P is a higherorder function (supplied externally to count), we cannot even 1112 1113 CPS transform count locally as the interface of *P* would be incompatible with the CPS interface. Many such transforms 1114 1115 are possible in a first-order setting, but they are not an option 1116 for us due to the inherent higher-order nature of our setting.

1118 5.7 No Shortcuts

1117

1128

1119 We sketch the idea behind the proof of the fact that any 1120 *n*-count program in λ_b must construct 2^n points. Full details 1121 are in Appendix C.2. The proof makes use of the observation 1122 that the decision tree model encodes the canonical structure 1123 of any *n*-standard predicate. We can reify a (semantic) *n*-1124 standard model as a (syntactic) n-standard predicate. This 1125 procedure provides a means for converting any *n*-standard 1126 predicate *P* into a canonical form (first compute the model, 1127 then reify, a la normalisation by evaluation [6]).

Lemma 5.13. Suppose P is an n-standard predicate and C is an n-count program, then C applies P to at least 2^n distinct n-points.

The lemma guarantees that any *n*-count program constructs an *n*-point corresponding to each leaf in the model
of any given *n*-standard predicate.

1136 5.8 No Sharing

1137 We now show that distinct predicate applications cannot 1138 share computation. In order to do so, we introduce the notion 1139 of *threads*. Intuitively, a thread corresponds to a path in a 1140 decision tree model. Each thread of an *n*-standard model is 1141 composed of n + 1 sections, where each corresponds to an 1142 edge in the model. Thus we can identify the start and end 1143 of any section by looking for point queries and responses. 1144 Definition 5.15 makes use of an auxiliary reduction relation 1145 → to define threads and sections. Intuitively, this reduction 1146 relation ensures that we cannot inadvertently "step over" an 1147 application of a point. 1148

Definition 5.14 (-**). $\mathcal{E}[M] \twoheadrightarrow \mathcal{E}[N]$ iff $\mathcal{E}[M] \rightsquigarrow \mathcal{E}[N]$ and *M* is not of the form *p V* where *p* is a point.

¹¹⁵¹ **Definition 5.15** (Sections and threads). A section is a pair of ¹¹⁵² computations, where the first component marks the start of ¹¹⁵³ the section and the second marks the end. For an *n*-standard ¹¹⁵⁴ predicate *P*, a thread of *P* consists of n + 1 sections. Given ¹¹⁵⁵ a denotation, f, of a concrete *n*-point, and taking p to be a distinguished free variable, a single thread for P can be computed as follows

Th : Comp × $(\mathbb{N}_n \to \mathbb{B}) \to [(Comp, Comp)]$
$Th(P \ p, f) := (P \ p, \mathcal{E}[p \ V]) :: Th(\mathcal{E}[\mathbf{return} \ \ b\], f),$
where $Sec(P p) = \mathcal{E}[p V]$ and $b = f(\mathbb{N}[V])$
$Th(\mathcal{E}[return W], f) :=$
$(\mathcal{E}[\mathbf{return} \ W], \mathcal{E}'[p \ V]) :: Th(\mathcal{E}[\mathbf{return} \ (b)], f)$
where $Sec(\mathcal{E}[\mathbf{return } W]) = \mathcal{E}'[p V]$ and $b = f(\mathbb{N}[V])$
$Th(\mathcal{E}[\mathbf{return} \ W], f) \coloneqq (\mathcal{E}[\mathbf{return} \ W], \mathbf{return} \ V) \coloneqq []$
where $Sec(\mathcal{E}[return W]) = return V$

The auxiliary procedure Sec computes the end of a section from the start.

$$\operatorname{Sec}(\mathcal{E}[M]) \coloneqq \begin{cases} \mathcal{E}'[p\,V] & \text{if } \mathcal{E}[M] \twoheadrightarrow^{+} \mathcal{E}'[p\,V] \\ \operatorname{return} V & \text{if } \mathcal{E}[M] \twoheadrightarrow^{*} \operatorname{return} V \end{cases}$$

Now we show that every predicate application gives rise to a corresponding thread via Th(-, -).

Lemma 5.16. Suppose *P* is an *n*-standard predicate, *p* is an *n*-point, and $f = \mathbb{P}[\![p]\!]$, then

$$P p \twoheadrightarrow^{+} \mathcal{E}_{1}[p V_{1}] \rightsquigarrow^{+} \mathcal{E}_{1}[\operatorname{return} (f (\mathbb{N}[V_{1}]))] \twoheadrightarrow^{+} \cdots$$
$$\twoheadrightarrow^{+} \mathcal{E}_{n}[p V_{n}] \rightsquigarrow^{+} \mathcal{E}_{n}[\operatorname{return} (f (\mathbb{N}[V_{n}]))] \twoheadrightarrow^{*} \operatorname{return} W$$

if and only if

$$\Gamma h(P p, f) = \begin{bmatrix} (P p, \mathcal{E}_1[p V_1]), \\ (\mathcal{E}_1[\mathbf{return} (f(\mathbb{N}\llbracket V_1 \rrbracket))], \mathcal{E}_2[p V_2]), \\ \vdots \\ (\mathcal{E}_n[p V_n], \mathcal{E}_n[\mathbf{return} (f(\mathbb{N}\llbracket V_n \rrbracket))], \\ (\mathcal{E}_n[\mathbf{return} (f(\mathbb{N}\llbracket V_n \rrbracket))], \mathbf{return} W) \end{bmatrix}$$

The lemma tells us that every predicate application has an associated thread and vice versa. By Lemma 5.13 we know that any *n*-count program must construct at least 2^n distinct threads. To establish the desired result, we need some way of characterising disjointness of threads.

Definition 5.17. Let *C* denote an *n*-count program and *P* an *n*-standard predicate. Any two threads T_0 and T_1 arising from distinct applications of *P* in *C* are said to be disjoint if every section computation of T_0 is distinct from every section computation of T_1 , where the section computations of a thread comprise the set of all start and end computations of the sections in that thread.

Now we may conclude that no two distinct predicate applications can share computation, or in other words every section of their associated threads must be evaluated.

Lemma 5.18. Suppose *P* is an *n*-standard predicate and *C* is an *n*-count program, and let p_0 and p_1 be distinct *n*-points, then the predicate applications *P* p_0 and *P* p_1 within *C* have disjoint threads.

1206

1207

1208

1209

1210

1156

1157

1211				Qu	eens			Integration								
1212		Firs	st solut	ion	All solutions			Id	S	quarin	g		Ι	Logisti	с	
1213	Parameter	20	24	28	8	10	12	20	14	17	20	1	2	3	4	5
1214	Naïve	∞	∞	∞	274.18	∞	∞	17.17	50.61	65.8	80.58	∞	∞	∞	∞	∞
1215	Berger	9.29	12.69	∞	2.11	2.81	3.41	5.59	23.30	25.65	27.50	26.10	33.27	34.02	32.76	31.00
1216	Pruned	2.03	2.37	2.66	1.29	1.42	1.52	2.27	4.39	5.00	5.08	4.80	6.25	7.18	8.09	8.80
1217	Bespoke	0.13	0.12	0.12	0.15	0.05	0.04									

Table 1. Speedup of the Effectful Implementation

Complexity of Pure Generic Counting 5.9

Now we can plug together the formal machinery developed in the previous sections to state and prove the complexity result for pure generic counting programs.

Theorem 5.19. For all n > 0 and every n-count program count $\in \lambda_b$, and *n*-standard predicate the runtime of count P is at least

$$\sum_{bs\in\mathbb{B}^*}^{|bs|\leq n} 2^{n-|bs|} \operatorname{steps}(t)(bs) + \Omega(n2^n)$$

where $t = \mathcal{T}(P)$. 1232

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1258

Proof. By composing Lemmas 5.13 and 5.18 we obtain the result in terms of the operational semantics. To lift this result to the abstract machine semantics we apply Theorem 4.2.

Robustness 6

Our complexity result is robust as it remains true in more general settings. We outline here how it generalises beyond *n*-standard predicates and to richer base languages.

1243 Beyond n-standard Predicates The n-standard restriction 1244 ensures that the models of predicates are complete binary 1245 trees. It is possible to relax the restriction at the expense of 1246 a more complicated analysis. The restriction serves to make 1247 the result as crisp as possible. Nevertheless, we may augment 1248 the effcount program with internal state to keep track of the 1249 queries raised by predicates and to remember answers of 1250 previous queries. State is definable in λ_h using a standard 1251 technique known as parameter-passing [38]. 1252

Mutable State Mutable state is a staple ingredient of many 1253 practical programming languages. To support mutable state, 1254 the base language is endowed with a heap (giving rise to 1255 a CESK machine [12], where S means store). Modulo heap 1256 bookkeeping, the analysis is the same. 1257

Experiments 1259

The theoretical efficiency gap between realisations of λ_b and 1260 $\lambda_{\rm h}$ manifests in practice. We have observed it empirically 1261 on instantiations of n-Queens and exact real number inte-1262 1263 gration, which can be cast as generic search. Table 1 shows the speedup of using an effectful implementation of generic 1264 1265

search over various pure implementations. We discuss the benchmarks and results in further detail below.

Methodology We evaluated an effectful implementation of generic search against three "pure" implementations which are realisable in $\lambda_{\rm b}$ extended with mutable state:

- Naïve: a variation of the purecount program;
- Pruned: a generic search procedure with space pruning based on Longley's technique [28] (uses local state);
- Berger: a lazy pure functional generic search procedure based on Berger's algorithm [5].

Each benchmark was run 11 times. The reported figure is the median runtime ratio between the particular implementation and the baseline effectful implementation. Benchmarks that failed to terminate within a threshold (1 minute for single solution, 8 minutes for enumerations), are reported as ∞ . The experiments were conducted in SML/NJ v110.78 with factory settings on an Intel Xeon CPU E5-1620 v2 @ 3.70GHz powered workstation running Ubuntu 16.04. The effectful implementation uses an encoding of delimited control akin to effect handlers based on top of SML/NJ's call/cc.

Queens We phrase the *n*-Queens problem as a generic search problem. As a control we include a bespoke implementation hand-optimised for the problem. We perform two experiments: finding the first solution for $n \in \{20, 24, 28\}$ and enumerating all solutions for $n \in \{8, 10, 12\}$. The speedup over the naïve implementation is dramatic, but less so over the Berger procedure. The pruned procedure is more competitive, but still slower than the baseline. Unsurprisingly, the baseline is much slower than the bespoke implementation.

Exact Real Integration The integration benchmarks are adapted from Simpson [39]. We integrate three different functions with varying precision in the interval [0, 1]. For the identity function (Id) at precision 20 the speedup relative to Berger is 5.59×. For the squaring function the speedups are larger at higher precisions: at precision 14 the speedup is $4.39 \times$ over the pruned integrator, whilst it is $5.08 \times$ at precision 20. The speedups are more extreme against the naïve and Berger integrators. We also integrate the logistic map $x \mapsto 1 - 2x^2$ at a fixed precision of 15. We make the function harder to compute by iterating it up to 5 times.

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1321 1322

1325

1339

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1323

8 Conclusions and Future Work

We presented a PCF-inspired language λ_b and its extension with effect handlers λ_h . We proved that λ_h exhibits an asymptotically more efficient implementation of generic search than any possible implementation in λ_b . We observed its effect in practice on several benchmarks.

Between the pruned and effectful integrator the speedup

ratio increases as the function becomes harder to compute.

The result extends to other control operators by appeal to 1331 existing results on interdefinability of handlers and other con-1332 trol operators [17, 34]. The result no longer applies directly 1333 if we add an effect type system to λ_h , as the implementation 1334 of the counting program would require a change of type for 1335 predicates to reflect the ability to perform effectful opera-1336 tions. In future we plan to investigate how to account for 1337 effect type systems. 1338

1340 Acknowledgments

We would like to thank James McKinna for insightful discussions about this work. Daniel Hillerström was supported by EPSRC grant EP/L01503X/1 (EPSRC Centre for Doctoral Training in Pervasive Parallelism). Sam Lindley was supported by EPSRC grant EP/K034413/1 (From Data Types to Session Types—A Basis for Concurrency and Distribution).

References

- [1] Andrej Bauer. 2011. How make the "impossible" functionals run even faster. Mathematics, Algorithms and Proofs, Leiden, the Netherlands. (2011). http://math.andrej.com/2011/12/06/ how-to-make-the-impossible-functionals-run-even-faster/
- [2] Andrej Bauer. 2018. What is algebraic about algebraic effects and handlers? CoRR abs/1807.05923 (2018).
- [3] Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. J. Log. Algebr. Meth. Program. 84, 1 (2015), 108– 123.
- [4] Nick Benton and Andrew Kennedy. 2001. Exceptional Syntax Journal of Functional Programming. J. Funct. Program. 11, 4 (2001), 395–410.
- [5] Ulrich Berger. 1990. Totale Objekte und Mengen in der Bereichstheorie. Ph.D. Dissertation. Ludwig Maximillians-Universitiät, Munich.
- [6] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. 1998. Normalisation by Evaluation. In *Prospects for Hardware Foundations (Lecture Notes in Computer Science)*, Vol. 1546. Springer, 117–137.
- [7] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski.
 2019. Abstracting algebraic effects. *PACMPL* 3, POPL (2019), 6:1–6:28.
- [8] Richard Bird, Geraint Jones, and Oege de Moor. 1997. More haste less speed: lazy versus eager evaluation. J. Funct. Progr. 7, 5 (1997), 541–547.
- 1367 [9] Robert Cartwright and Matthias Felleisen. 1992. Observable Sequentiality and Full Abstraction. In *POPL*. ACM Press, 328–342.
- [10] Robbie Daniels. 2016. Efficient Generic Searches and Programming Language Expressivity. Master's thesis. School of Informatics, the University of Edinburgh, Scotland. http://homepages.inf.ed.ac.uk/jrl/ Research/Robbie_Daniels_MSc_dissertation.pdf
- [11] Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and
 Anil Madhavapeddy. 2015. Effective Concurrency through Algebraic
 Effects. OCaml Workshop. (2015).

- [12] Matthias Felleisen. 1987. The Calculi of Lambda-nu-cs Conversion: A Syntactic Theory of Control and State in Imperative Higher-order Programming Languages. Ph.D. Dissertation. Indianapolis, IN, USA. AAI8727494.
- [13] Matthias Felleisen. 1991. On the expressive power of programming languages. Sci. Comput. Prog. 17, 1–3 (1991), 35–75.
- [14] Matthias Felleisen and Daniel P. Friedman. 1987. Control Operators, the SECD-machine, and the λ-Calculus. In *The Proceedings of the Conference on Formal Description of Programming Concepts III, Ebberup, Denmark.* Elsevier, 193–217.
- [15] Andrzej Filinski. 1994. Representing Monads. In POPL. ACM Press, 446–457.
- [16] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations. In *PLDI*. ACM, 237–247.
- [17] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2017. On the expressive power of user-defined effects: effect handlers, monadic reflection, delimited control. *PACMPL* 1, ICFP (2017), 13:1–13:29.
- [18] Daniel Hillerström and Sam Lindley. 2016. Liberating effects with rows and handlers. In *TyDe@ICFP*. ACM, 15–27.
- [19] Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017. Continuation Passing Style for Effect Handlers. In FSCD (LIPIcs), Vol. 84. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 18:1–18:19.
- [20] Neil Jones. 2001. The expressive power of higher-order types, or, life without CONS. J. Funct. Progr. 11 (2001), 5–94.
- [21] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In *ICFP*. ACM, 145–158.
- [22] Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible effects: an alternative to monad transformers. In *Haskell*. ACM, 59–70.
- [23] Donald Knuth. 1997. *The Art of Computer Programming, Volume 1: Fundamental Algorithms (third edition).* Addison-Wesley.
- [24] Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In POPL. ACM, 486–499.
- [25] Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming languages. *Inf. Comput.* 185, 2 (2003), 182–210.
- [26] Sam Lindley. 2014. Algebraic effects and effect handlers for idioms and arrows. In WGP@ICFP. ACM, 47–58.
- [27] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In POPL. ACM, 500–514.
- [28] John Longley. 1999. When is a functional program not a functional program?. In *ICFP*. ACM, 1–7.
- [29] John Longley. 2018. Bar recursion is not computable via iteration. To appear in Computability. Available at arxiv.org/abs/1804.07277. (2018).
- [30] John Longley. 2018. The recursion hierarchy for PCF is strict. Logical Methods in Comput. Sci. 14, 3:8 (2018), 1–51.
- [31] John Longley and Dag Normann. 2015. *Higher-Order Computability*. Springer.
- [32] Chris Okasaki. 1999. Purely functional data structures. Cambridge University Press.
- [33] Nicholas Pippenger. 1996. Pure versus impure Lisp. In POPL. ACM, 104–109.
- [34] Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Typed Equivalence of Effect Handlers and Delimited Control. In *FSCD (LIPIcs)*, Vol. 131. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 30:1– 30:16.
- [35] Gordon Plotkin. 1997. LCF considered as a programming language. *Theor. Comput. Sci.* 5, 3 (1997), 223–255.
- [36] Gordon D. Plotkin and John Power. 2001. Adequacy for Algebraic Effects. In FoSSaCS (Lecture Notes in Computer Science), Vol. 2030. Springer, 1–24.

1375

1431	[37] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects.	1486
1432	2 Logical Methods in Computer Science 9, 4 (2013).	1487
1433	[38] Matija Pretnar. 2015. An Introduction to Algebraic Effects and Han-	1488
1434	tutorial paper.	1489
1435	[39] Alex K. Simpson. 1998. Lazy Functional Algorithms for Exact Real	1490
1436	Functionals. In <i>MFCS (Lecture Notes in Computer Science)</i> , Vol. 1450.	1491
1437	7 Springer, 456–464.	1492
1438	8	1493
1439	9	1494
1440		1495
1441	1	1496
1442	2	1497
1443	3	1498
1444	4	1499
1445	5	1500
1446	6	1501
1447	7	1502
1448	8	1503
1449	9	1504
1450		1505
1451	1	1506
1452	2	1507
1453	3	1508
1454	4	1509
1455	5	1510
1456	6	1511
1457	7	1512
1458	8	1513
1459	9	1514
1460		1515
1461	1	1516
1462	2	1517
1463	3	1518
1464	4	1519
1465	5	1520
1466	6	1521
1467	7	1522
1468	8	1523
1469	9	1524
1470		1525
1471	1	1526
1472	2	1527
1473	3	1528
1474	4	1529
1475	5	1530
1476	6	1531
1477	7	1532
1478	8	1533
1479	9	1534
1480		1535
1481	1	1536
1482	2	1537
1483	3	1538
1484	4	1539
1485	5 14	1540

1541	Configurations Continuation	ns	1596
1542		([])M = M	1597
1543	$(\langle M \mid \gamma \mid \sigma \rangle) = (\langle \sigma \rangle)(\langle M \rangle)\gamma) \qquad (\langle \gamma, z \rangle)$	$(x, N) :: \sigma M = (\sigma)(\text{let } x \leftarrow M \text{ in } (N)(\gamma \setminus \{x\}))$	1598
1544	Computation terms		1599
1545		$V W \gamma = (V) \gamma (W) \gamma$	1600
1546	$\langle \mathbf{let} \langle x; y \rangle = V \mathbf{i}$	$\mathbf{n} \ N \ \gamma = \mathbf{let} \ \langle x; y \rangle = (V) \gamma \ \mathbf{in} \ (N) (\gamma \setminus \{x, y\})$	1601
1540	(case V {inl $x \mapsto M$; inr $y \mapsto$	$N = \operatorname{case} (V) \gamma \{ \operatorname{inl} x \mapsto (M) (\gamma \setminus \{x\});$	1607
1540		$\operatorname{inr} y \mapsto (N)(\gamma \setminus \{y\})\}$	1602
1548	(retur	$\mathbf{n} \ V \mathbf{i} \mathbf{\gamma} = \mathbf{return} \ (V \mathbf{i} \mathbf{\gamma} $	1603
1549	(let $x \leftarrow M$ i	$\mathbf{n} \ N \ \gamma = \mathbf{let} \ x \leftarrow (M) \gamma \ \mathbf{in} \ (N) (\gamma \setminus \{x\})$	1604
1550	Value terms and values		1605
1551	$\ x\ _{\mathcal{V}} = \ y\ $ if $y(x) = y$	(n) - n	1606
1552	$ (x)y = (v), \text{if } y(x) = v $ $ (x)y = x \text{if } x \notin dom(y) $	$ (n) = n $ $ (n) = n $ $ (n) = \lambda r^{A} (M)(n \setminus \{r\}) $	1607
1553	$(x) y = x, \qquad n x \notin uon(y)$ $(n) y = n$	$ \ (y, \mathcal{H}_{\mathcal{H}}, \mathcal{H}_{\mathcal{H}})\ = \mathcal{H}_{\mathcal{H}} \cdot (\mathcal{H}_{\mathcal{H}}) \ (y, \mathcal{H}_{\mathcal{H}}) \ $	1608
1554	$(\lambda x^{A}, M)y = \lambda x^{A}, (M)(y \setminus \{x\})$		1609
1555	$(\operatorname{rec} f x^{A}.M)y = \operatorname{rec} f x^{A}.(M)(y \setminus \{f, x\})$	$(\langle v; w \rangle) = \langle (v); (w) \rangle$	1610
1556	$(\langle \rangle) \gamma = \langle \rangle$	$\langle (\mathbf{inl} \ v)^B \rangle = (\mathbf{inl} \ \langle v \rangle)^B$	1611
1557	$(\langle V; W \rangle) \gamma = \langle (V) \gamma; (W) \gamma \rangle$	$\langle (\mathbf{inr} \ w)^A \rangle = (\mathbf{inr} \ (w))^A$	1612
1558	$((\mathbf{inl} \ V)^B)\gamma = (\mathbf{inl} \ (V)\gamma)^B$	$(\sigma^A) = \lambda x^A . (\sigma) ($ return $x)$	1613
1559	$((\operatorname{\mathbf{inr}} W)^A)\gamma = (\operatorname{\mathbf{inr}} (W)\gamma)^A$		1614
1560			1615
1561	Figure 6 Mapping from Base M	achine Configurations to Terms	1616
1562			1617
1563			1618
1564	A Proof Details for Correctness of the Base A	bstract Machine	1619
1565	<i>Correctness</i> We now show that the abstract machine is correc	t with respect to the operational semantics, that is, the abstract	1620
1566	machine faithfully simulates the operational semantics. Initia	l states provide a canonical way to map a computation term	1621
1567	onto the abstract machine. A more interesting question is ho	w to map an arbitrary configuration to a computation term.	1622
1568	Figure 6 describes such a mapping $(-)$ from configurations to te	rms via a collection of mutually recursive functions defined on	1623
1569	configurations, continuations, computation terms, value terms, a	and machine values. The mapping makes use of two operations	1624
1570	on environments, γ , which we define now.		1625
1571	Definition A 1 We muite dem(w) for the domain of u	d(x) (x , x) for the methics of environment x to	1626
1572	Definition A.1. we write $aom(\gamma)$ for the domain of γ , as	and $\gamma \setminus \{x_1, \ldots, x_n\}$ for the restriction of environment γ to	1627
1573	$aom(\gamma) \setminus \{x_1, \ldots, x_n\}.$		1628
1574	The $(-)$ function enables us to classify the abstract machine i	reduction rules according to how they relate to the operational	1629
1575	semantics. The rule (M-LET) is administrative in the sense that ($-$] is invariant under this rule. This leaves the β -rules (M-APP),	1630
1576	(M-Split), (M-CASE), and (M-RETCONT). Each of these corresp	onds directly with performing a reduction in the operational	1631
1577	semantics.		1632
1578			1633
1579	Demnition A.2 (Auxiliary reduction relations). We write —	\rightarrow_a for administrative steps, \longrightarrow_{β} for β -steps, and \Longrightarrow for a	1634
1580	sequence of steps of the form $\longrightarrow_a \longrightarrow_{\beta}$.		1635
1581	The following lemma describes how we can simulate eac	h reduction in the operational semantics by a sequence of	1636
1582	administrative steps followed by one β -step in the abstract matrix	chine.	1637
1583			1638
1584	Lemma A.3. Suppose M is a computation and C is configuration	on such that $(C) = M$, then if $M \rightarrow N$ there exists C' such that	1639
1585	$C \Longrightarrow C'$ and $(C') = N$, or if $M \nleftrightarrow$ then $C \nleftrightarrow$.		1640
1586	<i>Proof.</i> By induction on the derivation of $M \rightsquigarrow N$.		1641
1587			1642
1588	The correspondence here is rather strong: there is a one-to-o	ne mapping between \rightarrow and \implies . The inverse of the lemma is	1643
1589	straightforward as the semantics is deterministic. Notice that	Lemma A.3 does not require that <i>M</i> be well-typed. We have	1644
1590	chosen here not to perform type-erasure, but the results can be	adapted to semantics in which all type annotations are erased.	1645
1591	Theorem A.4 (Simulation). <i>If</i> \vdash <i>M</i> : <i>A</i> and <i>M</i> \sim $^+$ <i>N</i> such that	t N is normal, then $\langle M \emptyset [] \rangle \longrightarrow^+ C$ such that $\ C\ = N$. or	1646
1592	$M \not\rightarrow$ then $\langle M \emptyset [] \rangle \not\rightarrow$.		1647
1593			1648
1594	<i>Proof.</i> By repeated application of Lemma A.3.		1649
1595	15		1650

Proof Details for the Complexity of Effectful Generic Counting B

In this appendix we give proof details and artefacts for Theorem 5.12. Throughout this section we let H_{count} denote the handler definition of count, that is

 $H_{\text{count}} := \left\{ \begin{array}{ll} \mathbf{val} \ x & \mapsto \mathbf{if} \ x \ \mathbf{then} \ \mathbf{return} \ 1 \ \mathbf{else} \ \mathbf{return} \ 0 \\ \text{Branch} \ \langle \rangle \ r \mapsto \mathbf{let} \ x \leftarrow r \ \mathbf{true} \ \mathbf{in} \\ \mathbf{let} \ y \leftarrow r \ \mathbf{false} \ \mathbf{in} \\ x + y \end{array} \right\}$

The timed decision tree model embeds timing information. For the proof we must also know the abstract machine environment and the pure continuation. Thus we decorate timed decision trees with this information.

Definition B.1 (decorated timed decision trees). A decorated timed decision tree is a partial function $t : \mathbb{B}^* \rightarrow (Lab \times I)$ Nat) \times (Env \times PureCont) such that its first projection $bs \mapsto t(bs)$.1 is a timed decision tree. As an abbreviation, we define $\mathsf{DT} := \mathbb{B}^* \rightharpoonup (\mathsf{Lab} \times \mathsf{Nat}) \times (\mathsf{Env} \times \mathsf{PureCont}).$

We extend the projections labs and steps in the obvious way to work over decorated timed decision trees. We define two further projections. The first $env(t) := bs \mapsto t(bs)$.2.1 projects the environment, whilst the second pure(t) := $bs \mapsto t(bs)$.2.2 projects the pure continuation.

The following definition gives a procedure for constructing a decorated timed decision tree. The construction is similar to that of Definition 5.4.

Definition B.2. The decorated timed decision tree of a configuration is defined by the following equations

10/0	
1674	$\mathcal{D}:Conf oDT$
1675	$\mathcal{D}(\langle \mathbf{return} \gamma [] \rangle) [] = ((!true, 0), (\gamma, []))$
1676	$\mathcal{D}(\langle \mathbf{return} \; false \mid \gamma \mid [] \rangle) [] = ((!false, 0), (\gamma, []))$
1677	$\mathcal{D}(\langle p V \mid \gamma \mid \sigma \rangle)[] = ((?[[V]]\gamma, 0), (\gamma, \sigma))$
1678	
1679	$\mathcal{D}(\langle p V v \sigma \rangle)(b :: bs) \simeq \mathcal{D}(\langle \text{return } b v \sigma \rangle) bs$
1680	$\mathcal{D}(\langle M \mid \gamma \mid \sigma \rangle) bs \simeq \mathcal{I}(\mathcal{D}(\langle M' \mid \gamma' \mid \sigma')) bs).$
1681	$if \langle M \mid y \mid \sigma \rangle \longrightarrow \langle M' \mid y' \mid \sigma' \rangle$
1799	

where $I((\ell, s), (\gamma, \sigma)) := ((\ell, s + 1), (\gamma, \sigma))$ and p is a distinguished free variable such that in all of the above equations $\gamma(p) = \gamma'(p) = p.$

We shall write $\mathcal{D}(P)$ to mean $\mathcal{D}(\langle P \ p \mid \emptyset[p \mapsto p] \mid [] \rangle)$.

We define some functions, that given a list of booleans and a *n*-standard predicate, compute configurations of the effectful abstract machine at particular points of interest during evaluation of the given predicate. Let $\chi_{count}(V) := (\emptyset[pred \mapsto f(v)])$ [V], H_{count}) denote the handler closure of H_{count} .

Notation. For an *n*-standard predicate *P* we write |P| = n for the size of the predicate. Furthermore, we define χ_{id} for the identity handler closure $(\emptyset, \{$ **val** $x \mapsto x\})$.

Definition B.3 (computing machine configurations). For any given *n*-standard predicate *P* and a list of booleans *bs*, such that $|bs| \le n$, we can compute machine configurations at points of interest during evaluation of count P.

To make the notation slightly simpler we use the following conventions whenever *n*, *t*, and *c* appear free: n = |P|, $t = \mathcal{D}(P)$, and c = C(P).

• The function arrive either computes the configuration at a query node, if |bs| < n, or the configuration at an answer node.

1700	arrive : $\mathbb{B}^* \times \text{Val} \rightarrow \text{Conf}$	1755
1701	arrive $(bs, P) := \langle V j \gamma (\sigma, \chi_{count}(P)) :: residual(bs, P) \rangle$, if $ bs < n$	1756
1702	where $\gamma = \text{env}(t)(bs), ?j = \text{labs}(t)(bs), \text{ and } \llbracket V \rrbracket \gamma = (\text{env}^{\perp}(P), \lambda_{-}.\mathbf{do} \text{ Branch } \langle \rangle)$	1757
1703	arrive(<i>bs</i> , <i>P</i>) := \langle return <i>b</i> γ ([], χ _{count} (<i>P</i>)) :: residual(<i>bs</i> , <i>P</i>) \rangle , if <i>bs</i> = <i>n</i>	1758
1704	where $\gamma = env(t)(bs)$ and $!b = labs(t)(bs)$	1759
1705	16	1760

1865

1866

1867

1868

1869

1870

1761	• Correspondingly, the depart function computes the configuration either after the completion of a query or handling of	1816
1762	an answer.	1817
1763	depart : $\mathbb{B}^* \times \text{Val} \rightarrow \text{Cont}$	1818
1764	depart(bs, P) := (return m γ residual(bs, P)), if bs < n	1819
1766	where $\gamma = \text{env}_{\text{false}}(bs, P)$ and $m = c(\text{true } :: bs) + c(\text{false } :: bs)$	1820
1767	depart(bs, P) := $\langle \mathbf{return} \ m \mid \gamma \mid \mathbf{residual}(bs, P) \rangle$, if $ bs = n$	1821
1768	where $\gamma = \text{env}^{\perp}(P)$ and $m = c(bs)$	1822
1760	The two clauses of depart yield slightly different configurations. The first clause computes a configuration inside the	1824
1770	operation clause of H_{count} . The configuration is exactly tail-configuration after summing up the two respective values	1825
1771	returned by the two invocations of resumption. Whilst the second clause computes the tail-configuration inside of the	1826
1772	success clause of H_{count} after handling a return value of the predicate.	1827
1773	• The residual function computes the residual continuation structure which contains the bits of computations to perform	1828
1774	after handling a complete path in a decision tree.	1829
1775		1830
1776	$\operatorname{residual} : \mathbb{D} \times \operatorname{val} \to \operatorname{Cont}$	1831
1777	residual(bs, P) := [(purecont(bs, P), χ_{id})]	1832
1778	• The function purecont computes the pure continuation.	1833
1779		1834
1780	purecont : $\mathbb{B}^* \times \text{Val} \rightarrow \text{PureCont}$	1835
1781	purecont([], P) := []	1836
1782	purecont(true :: bs, P) := $(\gamma, x_{\text{true}}, \text{let } x_{\text{false}} \leftarrow r \text{ false in } x_{\text{true}} + x_{\text{false}})$:: purecont(bs, P),	1837
1783	where $\gamma = \text{env}_{\text{true}}^{\downarrow}(\text{true} :: bs, P)$	1838
1784	purecont(false :: bs, P) := ($\gamma, x_{false}, x_{true} + x_{false}$) :: purecont(bs, P),	1839
1785	where $\gamma = \text{env}_{\text{false}}^{\downarrow}(\text{false} :: bs, P)$	1840
1786		1841
1787	• The function env ^{\perp} computes the initial environment of the handler. The family of functions env ^{\ast} _{b\in B} contains two	1842
1788	functions, one for each instantiation of b, which describe how to compute the environment prior descending down a	1843
1789	branch as the result of invoking a resumption with <i>b</i> . Analogously, the functions in the family $env_{b\in\mathbb{B}}^{\dagger}$ describe how to	1844
1790	compute the environment after <i>ascending</i> from the resumptive exploration of a branch.	1845
1791		1846
1792	env^{\perp} : $Val \rightarrow Env$	1847
1793	$env^{\perp}(P) := \emptyset[\operatorname{pred} \mapsto \llbracket P \rrbracket \emptyset]$	1848
1794	env^{\downarrow} : $\mathbb{R}^* \times Val \rightarrow Env$	1849
1795	$(hc P) = env^{\perp}(V)[r \mapsto (\sigma v = (P))]$	1850
1796	$\operatorname{env}_{\operatorname{true}}(\partial s, f) := \operatorname{env}(\partial f) = $	1851
1797	where $b = \text{pure}(t)(bs)$	1852
1798	env_{false}^{\downarrow} : $\mathbb{B}^* \times \mathrm{Val} \to \mathrm{Env}$	1853
1799	$\operatorname{env}_{c-1}^{\downarrow}(bs, P) := \gamma[x \mapsto i],$	1854
1800	where $v = env^{\downarrow}$ (bs. P) and $i = c(true :: bs)$	1855
1801	true(co, r) and r c(true troo)	1856
1802	env_{false}^{\dagger} : $\mathbb{B}^* \times Val \rightarrow Env$	1857
1804	$env_{false}^{\uparrow}(bs, P) := \gamma[y \mapsto j],$	1858
1805	where $\gamma = \text{env}_{\text{false}}^{\downarrow}(bs, P)$ and $j = c(\text{false} :: bs)$	1859
1807	raise / / /	1860
1807	We require an auxiliary lemma, because we need to be able to reason about bits of predicate computation, specifically	1001
1808	when the predicate is first applied, going from a departure configuration to an arrival configuration, and from a departure	1863
1000	- contemporte and an anomaly and many sector of the tell and and a sector of the secto	.005

when the predicate is first applied, going from a departure configuration to an arrival configuration, and from a departure configuration to an answer configuration. The following lemma states that for an *n*-standard predicate, handler machine transitions in lock-step with the base machine. For a given predicate *P* we write $\chi = (P)^{val}$ to mean $\chi = (P)^{val} = (P)^{val} = (P)^{val} = (P)^{val} = (P)^{val}$ that is the

For a given predicate P we write $\chi_{\text{count}}(P)^{\text{val}}$ to mean $\chi_{\text{count}}(P)^{\text{val}} = (\emptyset[\text{pred} \mapsto [\![P]\!]\emptyset], H_{\text{count}})^{\text{val}} = H_{\text{count}}^{\text{val}}$, that is the projection of the success clause of H_{count} .

Lemma B.4. For any given n-standard predicate P and a list of booleans $bs \in \mathbb{B}^*$ such that $|bs| \le n$ along with two value V : Bool and $b \in \mathbb{B}$, then the base machine and handler machine transition in lock-step in either way

1814 1815

Conference'17, July 2017, Washington, DC, USA

1. If |bs| = [], then $\langle p(|i\rangle | \gamma' | \sigma \rangle$ where $?i = labs(t)([]), \gamma = \emptyset[P \mapsto P], \gamma' = env(t)([]), and \sigma = pure(t)([]); implies the handler machine perform the same$ amount of transitions $\langle P \ p \ | \ \gamma \ | \ ([], \chi_{\text{count}}(P)) :: \text{residual}(P, []) \rangle [(\lambda_. \text{do Branch} \langle \rangle)/p]$ $\longrightarrow \text{steps}(t)([])$ $\langle p (i) | \gamma' | (\sigma, \chi_{\text{count}}(P)) :: \text{residual}(P, []) \rangle [(\lambda_. \text{do Branch} \langle \rangle)/p]$ 2. For bs = b :: bs' we have the following two subcases • If |bs| < n, then where $?i = labs(t)(b :: bs), \gamma = env_{b}^{\downarrow}, \gamma' = env(t)(b :: bs), and \sigma = pure(t)(bs); implies the handler machine perform the$ same amount of transitions $\langle \mathbf{return} (b) | \gamma | (\sigma, \chi_{\mathrm{count}}(P)) :: \mathrm{residual}(P, b :: bs, n, t, c) \rangle [(\lambda_.do \mathrm{Branch} \langle \rangle)/p] \longrightarrow \operatorname{steps}(t)(b::bs)$ $\langle p (|i|) | \gamma' | (\sigma, \gamma_{\text{count}}(P)) :: \text{residual}(P, b :: bs, n, t, c) \rangle [(\lambda_.do \text{Branch} \langle \rangle)/p]$ • If|bs| = n, then $\underbrace{\langle \mathbf{return} (|b|) \mid \gamma \mid \sigma \rangle}_{\text{steps}(t)(b::bs')}$ $\langle \mathbf{return} (|b'|) | \gamma' | [] \rangle$ where b' = abs(t)(b :: bs), $\gamma = env(t)(bs)$, $\gamma' = env(t)(b :: bs)$, and $\sigma = pure(t)(bs)$; implies the handler machine perform the same amount of transitions $\langle \mathbf{return} (b) | \gamma | (\sigma, \chi_{\mathrm{count}}(P)) :: \mathrm{residual}(P, b :: bs, n, t, c) \rangle [(\lambda_.do \mathrm{Branch} \langle \rangle)/p] \longrightarrow \operatorname{steps}(t)(b::bs')$ $\langle \mathbf{return} \ (b') \ | \ \gamma' \ | \ ([], \ \chi_{\text{count}}(P)) :: \operatorname{residual}(P, b :: bs, n, t, c) \rangle [(\lambda_{-}.\mathbf{do} \operatorname{Branch} \langle \rangle)/p]$ *Proof.* Proof by induction on the transition relation \rightarrow . Let control : Conf \rightarrow Val denote a partial function that hoists a value out of a given machine configuration, that is $\operatorname{control}(\langle M \mid \gamma \mid \kappa \rangle) := \begin{cases} \llbracket V \rrbracket \gamma & \text{if } M = \operatorname{\mathbf{return}} V \\ \bot & \text{otherwise} \end{cases}$ The following lemma performs most of the heavy lifting for the proof of Theorem 5.12. **Lemma B.5.** Suppose *P* is an *n*-standard predicate, then for any list of booleans $bs \in \mathbb{B}^*$ such that $|bs| \leq n$ arrive(bs, P) $\rightsquigarrow^{T(bs,n)} \text{depart}(bs, P)$. and control(depart(bs, P)) $\leq 2^{n-|bs|}$ with the function T defined as $T(bs, n) = \begin{cases} 9 * (2^{n-|bs|} - 1) + 2^{n-|bs|+1} + \sum_{bs' \in \mathbb{B}^*}^{1 \le |bs'| \le n-|bs|} \operatorname{steps}(t)(bs' + bs) & \text{if } |bs| < n \\ 2 & \text{if } |bs| = n \end{cases}$ if|bs| = n*Proof.* By downward induction on *bs.*

1981	Base step We have that $ bs = n$. Since the predicate is <i>n</i> -standard we further have that $n \ge 1$. We proceed by direct	2036
1982	calculation.	2037
1983	$\operatorname{arrive}(bs, P)$	2038
1984	= (definition of arrive when $n = bs $)	2039
1985	$\langle \mathbf{return} \ b \mid \gamma \mid ([], \chi_{count}(P)) :: residual(bs, P) \rangle$	2040
1986	where $\gamma = \text{env}(t)(bs)$ and $b = \text{labs}(t)(bs)$	2041
1987	$\longrightarrow (M-\text{RetHANDLER}, \chi_{\text{count}}(P)^{\text{val}} = \{\text{val} x \mapsto \cdots \})$	2042
1988	(if x then return 1 else return $0 \gamma'[x \mapsto [[b]]\gamma'] $ residual(bs, P))	2043
1989	where $\gamma' = \chi_{\text{count}}(P).1$	2044
1990	The value b can assume either of two values. We consider first the case b = true.	2045
1991	= (assumption $b =$ true, definition of $[-]$ (2 value steps))	2046
1992	(if x then return 1 else return 0 $\gamma'[x \mapsto \text{true}]$ residual(bs, P))	2047
1993	\longrightarrow (M-IF-TT (and log $ \gamma'[x \mapsto true] = 1$ environment operations))	2048
1994	$\langle \mathbf{return} \ 1 \mid \gamma'[x \mapsto true] \mid residual(bs, n, P, t, c) \rangle$	2049
1995	= (definition of depart when $n = bs $)	2050
1996	depart(bs, P)	2051
1997	We have that eventual $(d_{n}, u) = 1 < 0^0 = 0^{n- bs }$ Next we consider the event b_{n} follows	2052
1998	we have that control(depart(bs, P)) = $1 \le 2^{s} = 2^{m+s-1}$. Next, we consider the case when $b =$ faise.	2053
1999	= (assumption b = false, definition of $[-]$ (2 value steps))	2054
2000	$\langle \mathbf{if} x \mathbf{then return 1 else return 0 } \gamma'[x \mapsto false] residual(bs, P) \rangle$	2055
2001	\longrightarrow (M-IF-TT (and log $ \gamma'[x \mapsto false] = 1$ environment operations))	2056
2002	\langle return 0 $\gamma'[x \mapsto false]$ residual(<i>bs</i> , <i>n</i> , <i>P</i> , <i>t</i> , <i>c</i>) \rangle	2057
2003	= (definition of depart when $n = bs $)	2058
2004	depart(bs, P)	2059
2005	Again we have that control(denart(hs P)) = $0 < 2^0 - 2^{n- bs }$	2060
2006	Again, we have that $\operatorname{control}(\operatorname{depart}(03, 1)) = 0 \leq 2^{-1} = 2^{-1}$	2061
2007	Step analysis In either case, the machine uses exactly 2 transitions. Thus we get that	2062
2008	2 = T(bs, n), when $ bs = n$	2063
2009		2064
2010	Inductive step The induction hypothesis states that for all $b \in \mathbb{B}$ and $ bs < n$	2065
2011	arrive $(b :: bs, P) \rightsquigarrow^{T(b::bs, n)} \text{depart}(b :: bs, P),$	2066
2012 2013	such that control(depart($b :: bs, P$)) $\leq 2^{n- b::bs }$. We proceed by direct calculation.	2067 2068
2013	$\operatorname{prrive}(h_{\mathcal{C}}, \mathcal{D})$	2000
2015	= (definition of arrive when $n < bc)$	2005
2015	$= (\text{definition of arrive when } n < b_3)$	2070
2017	$V = \frac{1}{2} + $	2071
2018	where $(j - abs(t)(ts), y - chv(t)(ts), 0 - pure(t)(ts), and v - (chv (t), x_do branch (t))$	2072
2010	/do Branch /\ $ v' \mapsto [i]v'] (\sigma v = (P)) :: residual(hs P))$	2073
2020	(u) Drahen $(/ f [- f []] (0, \chi_{count}(1)) :: restruction(0.5, 1)))$ where $v' = env^{\perp}(P)$	2075
2021	$(M-HANDE-OP \times (P)^{Branch} - \{Branch / \} r \rightarrow \dots \})$	2076
2022	(In Finite OF, (count(r))) = (Dranch(r) + r)	2077
2023	let $x_{\text{true}} \leftarrow r$ false in $ v[r \mapsto [(\sigma, v = (P))]v] $ residual(bs P)	2078
2024	$r_{r} + r_{c}$	2079
2025	where $v = env^{\perp}(P)$	2080
2026	= (definition of [-] (1 value step))	2081
2027	$(\text{let } r_{\text{max}} \leftarrow r \text{ true in})$	2082
2028	$\left(\text{let } x_{\text{folse}} \leftarrow r \text{ false in } v' \text{ residual}(bs P) \right)$	2083
2029	$\frac{1}{\chi_{\text{true}} + \chi_{\text{foloo}}}$	2084
2030	where $v' = v[r \mapsto (\sigma \mid v_{\dots,r}(P))]$	2085
2031	\rightarrow (M-LET, definition of residual)	2086
2032	$\langle r \text{ true } v' \text{ residual}(\text{true :: } bs. P) \rangle$	2087
2033	$\longrightarrow (M-\text{Resume} \left[r \right] v' = (\sigma, \gamma_{\text{count}}(P)) (\log v' = 1 \text{ environment operations}))$	2088
2034	(return true $ \gamma' $ (σ , $\gamma_{count}(P)$) :: residual(true :: <i>bs P</i>))	2089
2035	19	2090

2091 2092	We now use Lemma B.4 to reason about the progress of the predicate computation σ . There are two cases consider, either $1 + bs < n$ or $1 + bs = n$.	2146 2147
2093	Case $1 + bs < n$. We obtain the following configuration.	2148
2094		2149
2095		2150
2096		2151
2097		2152
2098	steps(t)(true:bs) (1, Lemma D A)	2153
2099	$\longrightarrow \text{ (by Lemma B.4)} \qquad (\text{by Lemma B.4})$	2154
2100	$\langle V \rangle \gamma^{*} (\sigma^{*}, \chi_{\text{count}}(P)) :: residual(true :: bs, P))$	2155
2101	where $f = \text{rabs}(t)(\text{true} :: bs), \gamma^{n} = \text{env}(t)(\text{true} :: bs), \sigma^{n} = \text{pure}(t)(\text{true} :: bs)$	2156
2102	$\operatorname{and} [v] \gamma^{*} = (\operatorname{env}^{\perp}(P), \Lambda_{-}.\operatorname{ao} \operatorname{Brancn}(\gamma))$	2157
2103	= (definition of arrive when 1 + vs < n)	2158
2104	$\frac{\operatorname{arrive}(\operatorname{true} :: bs, P)}{T(\operatorname{true} :: bs, n)} (: 1 (:$	2159
2105	\rightarrow (induction hypothesis)	2160
2106	depart(true :: bs, P)	2161
2107	= (definition of depart when $1 + bs < n$)	2162
2108	$\langle \mathbf{return} \ i \mid \gamma \mid \mathbf{residual}(\mathbf{true} :: bs, P) \rangle$	2163
2109	where $i = c(\text{true} :: \text{true} :: bs) + c(\text{false} :: \text{true} :: bs)$ and $\gamma = \text{env}_{\text{false}}^{\dagger}(\text{true} :: bs, P)$	2164
2110	= (definition of residual and purecont)	2165
2111	$\langle \mathbf{return} \ i \mid \gamma \mid [((\gamma', x_{true}, \mathbf{let} \ x_{false} \leftarrow r \ false \ \mathbf{in} \ x_{true} + x_{false}) :: purecont(bs, P), \chi_{id})] \rangle$	2166
2112	where $\gamma' = \text{env}_{\text{true}}^{\downarrow}(bs, P)$	2167
2113	\longrightarrow (M-RetCont)	2168
2114	$($ let $x_{\text{false}} \leftarrow r$ false in $x_{\text{true}} + x_{\text{false}} \mid \gamma'' \mid [(\text{purecont}(bs, P), \chi_{id})])$	2169
2115	where $\gamma^{\prime\prime} = \gamma^{\prime}[x_{true} \mapsto [\![i]\!]\gamma^{\prime}]$	2170
2116	\longrightarrow (M-Let)	2171
2117	$\langle r \text{ false } \gamma'' [((\gamma'', x_{\text{false}}, x_{\text{true}} + x_{\text{false}}) :: \text{purecont}(bs, P), \chi_{id})] \rangle$	2172
2118	= (definition of purecont and residual)	2173
2119	$\langle r \text{ false } \gamma'' \text{ residual(false :: } bs, P) \rangle$	2174
2120	\longrightarrow (M-Resume)	2175
2121	$\langle \mathbf{return} \; false \mid \gamma'' \mid (\sigma, \chi_{count}(P)) :: residual(false :: bs, P) \rangle$	2176
2122	where $\sigma = pure(t)(bs)$	2177
2123	\longrightarrow steps(<i>t</i>)(false:: <i>bs</i>) (by Lemma B.4 and assumption false :: <i>bs</i> < <i>n</i>)	2178
2124	$\langle V j \gamma (\sigma, \chi_{count}(P)) :: residual(false :: bs, P) \rangle$	2179
2125	where $j = labs(t)(false :: bs), \sigma = pure(t)(false :: bs), \gamma = env(t)(false :: bs)$	2180
2126	and $\llbracket V \rrbracket \gamma = (\text{env}^{\perp}(P), \lambda_{-}.\text{do Branch} \langle \rangle)$	2181
2127	= (definition of arrive when $1 + bs < n$)	2182
2128	arrive(false :: bs, P)	2183
2129	$\longrightarrow T(false::bs, n)$ (induction hypothesis)	2184
2130	depart(false :: bs, P)	2185
2131	= (definition of depart when $1 + bs < n$)	2186
2132	$\langle \mathbf{return} \ j \mid \gamma \mid \mathbf{residual}(\mathbf{false} :: bs, P) \rangle$	2187
2133	where $j = c(\text{true} :: \text{false} :: bs) + c(\text{false} :: \text{false} :: bs)$ and $\gamma = \text{env}_{\text{false}}^{\uparrow}(\text{false} :: bs, P)$	2188
2134	= (definition of residual and purecont)	2189
2135	$\langle \mathbf{return} \ j \mid \gamma \mid [((\gamma'', x_{false}, x_{true} + x_{false}) :: purecont(bs, P), \gamma_{id})] \rangle$	2190
2136	\rightarrow (M-RetCont)	2191
2137	$\langle x_{\text{true}} + x_{\text{false}} \gamma''[x_{\text{false}} \mapsto [j] \gamma''] \text{residual}(bs, P) \rangle$	2192
2138	\rightarrow (M-PLUS)	2193
2139	$\langle \mathbf{return} \ m \mid \gamma''[x_{false} \mapsto [j] \gamma''] \mid residual(bs, P) \rangle$	2194
2140	where $m = c(\text{true} :: \text{true} :: bs) + c(\text{false} :: \text{true} :: bs) + c(\text{true} :: \text{false} :: bs) + c(\text{false} :: \text{false} :: bs)$	2195
2141	$= c(true :: bs) + c(false :: bs) = c(bs) \le 2^{n- bs }$	2196
2142	= (definition of depart when $ bs < n$)	2197
2143	depart(bs, P)	2198
2144		2199
2145	20	2200

2201	<i>Step analysis</i> The total amount of machine transitions is given by	2256
2202		2257
2203		2258
2204		2259
2205		2260
2206	$0 \pm \operatorname{stans}(t)(true :: hs) \pm T(true :: hs n) \pm \operatorname{stans}(t)(folse :: hs) \pm T(folse :: hs n)$	2261
2207	= (reorder)	2262
2208	= (1001001) 0 + T(true hs n) + stens(t)(false hs) + stens(t)(true hs) + stens(t)(false hs)	2263
2209	- (definition of T)	2264
2210	$= (\operatorname{definition} \operatorname{or} 1)$ $= 0 + 0 + (2^{n- \operatorname{true}::bs } - 1) + 0 + (2^{n- \operatorname{false}::bs } - 1) + 2^{n- \operatorname{true}::bs +1} + 2^{n- \operatorname{false}::bs +1}$	2265
2211	9 + 9 * (2 + -1) + 9 * (2 + -1) + 2 + 2 + 2 1 < bc' < n - true: bs 1 < bc' < n - talse::bs	2266
2212	$+ \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$	2267
2213	$\int_{b' \in \mathbb{R}^*} b' \in \mathbb{R}^*$	2268
2214	+steps (t) (true :: bs) + steps (t) (false :: bs)	2269
2215	= (simplify)	2270
2216	$9 + 9 * (2^{n- \text{true::}bs } - 1) + 9 * (2^{n- \text{false::}bs } - 1) + 2^{n- bs +1}$	2271
2217	$1 \le bs' \le n - \text{true:}bs \qquad 1 \le bs' \le n - \text{false:}bs $	2272
2218	+ \sum steps(t)(bs' ++ true :: bs) + \sum steps(t)(bs' ++ false :: bs)	2273
2219	$bs' \in \mathbb{B}^*$	2274
2220	+steps(t)(true :: bs) + steps(t)(false :: bs)	2275
2221	= (merge sums)	2276
2222	$9 + 9 * (2^{n- true::os } - 1) + 9 * (2^{n- true::os } - 1) + 2^{n- os +1}$	2277
2223	$\sum_{n=1}^{n} \left(\sum_{j=1}^{n} a_{j}(x_{j}) + a_{j}(x_{j$	2278
2224	+ $\left[\sum_{t=1}^{\infty} \operatorname{steps}(t)(bs^{t} + bs)\right]$ + steps(t)(true :: bs) + steps(t)(talse :: bs)	2279
2225	= (rewrite binary sum)	2280
2226	$9 + 9 * (2^{n- \text{true:}bs } - 1) + 9 * (2^{n- \text{false:}bs } - 1) + 2^{n- bs +1}$	2281
2227	$2 \le bs' \le n - bs $ $1 \le bs' \le 1$	2282
2228	+ \sum steps(t)(bs' + bs) + \sum steps(t)(bs' + bs)	2283
2229	$bs' \in \mathbb{B}^*$	2284
2230	= (merge sums)	2285
2231	$1 \le bs' \le n - bs $	2286
2232	$9 + 9 * (2^{n- \text{true::}bs } - 1) + 9 * (2^{n- \text{talse::}bs } - 1) + 2^{n- bs +1} + \sum \text{steps}(t)(bs' + bs)$	2287
2233	$(f_{s,s}, f_{s,s}, f_{s,s})$	2288
2234	= (factoring)	2289
2235	$0 + 2 + 0 + (2^{n- bs -1} - 1) + 2^{n- bs +1} + \sum_{1 \le bs \le n- bs } \operatorname{steps}(t)(bt' + bt)$	2290
2236	y + 2 + y + (2 + 1) + 2 + 1 + 2 $h_{d} \in \mathbb{D}_*$ Steps(1)($ds = ds$)	2291
2237	= (distribute)	2292
2238	$1 \le bs' \le n - bs $	2293
2239	$9 + 9 * (2^{n- bs } - 2) + 2^{n- bs +1} + \sum_{i=1}^{n- bs +1} \operatorname{steps}(t)(bs' + bs)$	2294
2240	$bs' \in \mathbb{B}^*$	2295
2241	= (distribute)	2296
2242	$1 \le bs \le n - bs $	2297
2243	$9 + 9 * 2^{n} + 18 + 2^{n} + 18 + 2^{n} + 18 + 2^{n} + 18 + 12 + 12 + 12 + 12 + 12 + 12 + 12$	2298
2244	− (simplify)	2299
2245	$\frac{1 \le bs' \le n - bs }{1 \le bs' \le n - bs }$	2300
2246	$9 * 2^{n- bs } - 9 + 2^{n- bs +1} + \sum_{steps(t)(bs' + bs)} steps(t)(bs' + bs)$	2301
2247	$\sum_{bs'\in\mathbb{B}^*}$	2302
2240	= (factoring)	2303
2247	$1 \le bs' \le n - bs $	2304
2230	$9 * (2^{n- vs } - 1) + 2^{n- vs +1} + \sum steps(t)(bs' + bs)$	2305
2231	$(1 - C_{-1})^{+} = (-C_{-1})^{+}$	2306
2232	= (definition of 1)	2007
2255	$I(\partial S, n)$	2308
2255	01	2309
	21	2310

2311	Case $1 + bs = n$. We obtain the following configuration.	2366
2312		2367
2313		2368
2314		2369
2315		2370
2316		2371
2317		2372
2318		2373
2319		2374
2320	$\longrightarrow \frac{\operatorname{steps}(t)(\operatorname{true::}bs)}{\operatorname{by Lemma B.4}}$	2375
2321	\langle return $b \mid \gamma'' \mid ([], \chi_{count}(P)) :: residual(true :: bs, P) \rangle$	2376
2322	where $b = labs(t)(true :: bs), \gamma'' = env(t)(true :: bs)$	2377
2323	= (definition of arrive when $1 + bs = n$)	2378
2324	arrive(true :: bs, P)	2379
2325	$\longrightarrow T(\text{true::}bs,n)$ (induction hypothesis)	2380
2326	depart(true :: bs, P)	2381
2327	= (definition of depart when $1 + bs = n$)	2382
2328	$\langle \mathbf{return} \ i \mid \gamma \mid \mathrm{residual}(\mathrm{true} :: bs, P) \rangle$	2383
2329	where $i = c(\text{true} :: bs) \le 2^{n- \text{true}::bs } = 1$ and $\gamma = \text{env}^{\perp}(P)$	2384
2330	= (definition of residual and purecont)	2385
2331	$\langle \mathbf{return} \ i \mid \gamma \mid [((\gamma', x_{true}, \mathbf{let} \ x_{false} \leftarrow r \ false \ \mathbf{in} \ x_{true} + x_{false}) :: purecont(bs, P), \chi_{id})] \rangle$	2386
2332	\rightarrow (M-RetCont)	2387
2333	$(\text{let } x_{\text{false}} \leftarrow r \text{ false in } x_{\text{true}} + x_{\text{false}} \gamma'[x_{\text{true}} \mapsto [[i]]\gamma'] [(\text{purecont}(bs, P), \gamma_{id})])$	2388
2334	= (definition of $[-]$ (1 value step))	2389
2335	$\langle \text{let } x_{\text{false}} \leftarrow r \text{ false in } x_{\text{true}} + x_{\text{false}} \mid \gamma'' \mid [(\text{purecont}(bs, P), \chi_{id})] \rangle$	2390
2336	where $\gamma'' = \gamma'[x_{true} \mapsto i]$	2391
2337	\rightarrow (M-Let, definition of residual)	2392
2338	$\langle r \text{ false } y'' \text{ residual(false :: } bs. P) \rangle$	2393
2339	\rightarrow (M-Resume)	2394
2340	(return false $ \gamma'' (\sigma, \gamma_{count}(P)) ::: residual(false :: bs, P))$	2395
2341	where $\sigma = \text{pure}(t)(bs)$	2396
2342	\longrightarrow steps(t)(false::bs) (by Lemma B.4 and assumption $1 + bs = n$)	2397
2343	$\langle \mathbf{return} \ b \mid y \mid ([], y_{count}(P)) :: residual(false :: bs, P) \rangle$	2398
2344	where $!b = labs(t)(false :: bs), v = env(t)(false :: bs)$	2399
2345	= (definition of arrive when $1 + bs = n$)	2400
2346	arrive(false :: bs P)	2401
2347	$\longrightarrow \frac{T(\text{false: } bs, n)}{(\text{induction hypothesis})}$	2402
2348	depart(false \cdots by P)	2403
2349	- (definition of depart when 1 + be - n)	2404
2350	$(\text{return } i \mid y \mid \text{residual(false : hs } P))$	2405
2351	where $i = c(false :: bc) < 2^{n- false::bs } = 1$ and $v = anv^{\perp}(P)$	2406
2352	= (definition of residual and purecont)	2407
2353	$= \frac{1}{\left(\left(\frac{1}{2}\right)^{2}} + \frac{1}{2}\left(\frac{1}{2}\right)^{2} + \frac{1}{2}\left(\frac{1}{2}$	2408
2354	(IEUMI) γ [((γ , λ_{talse} , $\lambda_{true} + \lambda_{talse}$) purecont($(0, 1)$, χ_{id})]/	2409
2355	where $\gamma' = \text{env}_{\text{false}}^*(bs, P)$	2409
2356	\rightarrow (M-RETCONT)	2410
2350	$\langle x_{\text{true}} + x_{\text{false}} \gamma'' [(\text{purecont}(bs, P), \chi_{id})] \rangle$	2411
2357	where $\gamma'' = \gamma' [x_{\text{false}} \mapsto j \gamma'] = \gamma' [x_{\text{false}} \mapsto j]$	2412
2350	\rightarrow (M-PLUS)	2413
2339	$\langle \mathbf{return} \ m \mid \gamma'' \mid [(purecont(bs, P), \chi_{id})] \rangle$	2414
2300	where $m = c(\text{true} :: bs) + c(\text{false} :: bs) \le 2^{n- bs }$	2415
2301	= (definition of residual and depart when $ bs < n$)	2416
2302	depart(bs, P)	2417
2303		2418
2304		2419
2305	22	2420

2421	<i>Step analysis</i> The total amount of machine transitions is given by	2476
2422		2477
2423		2478
2424		2479
2425	9 + steps(t)(true :: bs) + T(true :: bs , n) + steps(t)(false :: bs) + T(false :: bs , n)	2480
2426	= (reorder)	2481
2427	9 + T(true :: bs, n) + T(talse :: bs, n) + steps(t)(true :: bs) + steps(t)(talse :: bs)	2482
2428	= (definition of T when $ bs + 1 = n$)	2483
2429	9+2+2+ steps(t)(true :: bs) + steps(t)(false :: bs)	2484
2430	= (simplify)	2485
2431	$9 + 2^2 + \text{steps}(t)(\text{true} :: bs) + \text{steps}(t)(\text{false} :: bs)$	2486
2432	= $(\text{rewrite } 2 = n - bs + 1)$	2487
2433	$9 + 2^{n- bs +1} + \text{steps}(t)(\text{true :: } bs) + \text{steps}(t)(\text{false :: } bs)$	2488
2434	= (multiply by 1)	2489
2435	$9 * (2^{n- bs } - 1) + 2^{n- bs +1} + steps(t)(true :: bs) + steps(t)(false :: bs)$	2490
2436	= (rewrite hinary sum)	2491
2437	$1 \le bs' \le n - bs $	2492
2438	$9 * (2^{n- bs } - 1) + 2^{n- bs } + \sum steps(t)(bs' + bs)$	2493
2439	$bs' \in \mathbb{B}^*$	2494
2440	= (definition of <i>T</i>)	2495
2441	T(bs, n)	2496
2442		2497
2443		2498
2444		2499
2445		2500
2446		L 2501
2447		2502
2448		2503
2449		2504
2450		2505
2451	The following theorem is a conv of Theorem 5.12	2506
2452	The following theorem is a copy of Theorem 5.12.	2507
2453		2508
2454		2509
2455	Theorem B.6. For all $n > 0$ and any n-standard predicate P it holds that	2510
2456		2511
2457	1. The program officient is a generic counting program that is:	2512
2458	1. The program encount is a generic counting program, that is.	2513
2459		2514
2400		2515
2401		2510
2402	effcount $P \rightsquigarrow^+$ return V, such that $\mathbb{N}[\![V]\!] = C(P)([]) \leq 2^n$	2517
2403		2510
2404		2519
2403		2520
2400	2. The most in a complexity of effective D is given by the fully in a formula	2521
2407	2. The runtime complexity of effcount P is given by the following formula:	2322
2400		2020
2409		2524
2470		2020
2471	$ bs \leq n$	2520
2412	$\sum \operatorname{steps}(\mathcal{T}(P))(bs) + O(2^n)$	2027
2413	$bs \in \mathbb{B}^*$	2520
2475	22	2323
44/J	25	2330

2531	<i>Proof.</i> The proof begins by direct calculation	ι.
	i vooji ine proor segnis sy aneee eareaation	

2532		2587
2533	$\langle \text{effcount } P \mid \emptyset \mid [([], \chi_{id})] \rangle$	2588
2534	= (definition of residual)	2589
2535	$\langle effcount P \mid \emptyset \mid residual(P, [], t, c) \rangle$	2590
2536	$\longrightarrow (M-APP, \ effcount\ \emptyset = (\emptyset, \lambda pred. \cdots))$	2591
2537	\langle handle pred (λ do Branch $\langle \rangle$) with $H_{\text{count}} \mid \gamma \mid \text{residual}(P, []) \rangle$	2592
2538	where $\gamma = \text{env}^{\perp}(P)$	2593
2539	\longrightarrow (M-Handle)	2594
2540	$\langle pred \ (\lambda\do Branch \ \langle \rangle) \ \ \gamma \ \ ([], (\gamma, H_{count})) :: residual(P, []) \rangle$	2595
2541	= (definition of χ_{count})	2596
2542	$\langle pred (\lambda\do Branch \langle \rangle) \gamma ([], \chi_{count}(P)) :: residual(P, []) \rangle$	2597
2543	$\longrightarrow steps(t)([])$ (by Lemma B.4)	2598
2544	$\langle (\lambda\do Branch \langle \rangle) j \gamma' (\sigma, \chi_{count}(P)) :: residual(P, []) \rangle$	2599
2545	where $\gamma' = \text{env}(t)([]), \sigma = \text{pure}(t)(bs)$ and $j = \text{labs}(t)(bs)$	2600
2546	= (definition of arrive)	2601
2547	$\operatorname{arrive}(P, [])$	2602
2548	$\longrightarrow T([], n)$ (by Lemma B.5)	2603
2549	depart(P,[])	2604
2550	= (definition of depart)	2605
2551	$\langle \mathbf{return} \ m \mid \gamma \mid \mathbf{residual}(P, []) \rangle$	2606
2552	where $\gamma = \text{env}^{\perp}(P)$ and $m = c([]) \le 2^{n- bs } = 2^n$	2607
2553	= (definition of residual)	2608
2554	$\langle \mathbf{return} \ m \mid \gamma \mid [([], \chi_{id})] \rangle$	2609
2555	$\longrightarrow (M-\text{HANDLE-RET}, H_{id}^{\text{val}} = \{ \text{val } x \mapsto \text{return } x \})$	2610
2556	$\langle \mathbf{return} \ x \mid \emptyset[x \mapsto m] \mid [] \rangle$	2611
2557		2612
2558	Analysis The machine yields the value <i>m</i> . By Lemma B.5 it follows that $m \le 2^{n- v_3 } = 2^{n- v_3 } = 2^n$. Furthermore, the total	2613
2559	amount of transitions used were	2614
2560	5 + steps(t)([]) + T([], n)	2615
2561	= (definition of T)	2616
2562	$1 \le bs' \le n$	2617
2563	$5 + \text{steps}(t)([]) + 9 * 2^{n} + 2^{n+1} + \sum \text{steps}(t)(bs')$	2618
2564	$bs' \in \mathbb{B}^*$	2619
2565	= (simplify)	2620
2566	$\frac{1 \le bs' \le n}{\sum}$	2621
2567	$5 + \text{steps}(t)([]) + 9 * 2^{n} + 2^{n+1} + \sum \text{steps}(t)(bs')$	2622
2568	$bs' \in \mathbb{B}^*$	2623
2569	= (1601061) (1< bs' <n< td=""><td>2624</td></n<>	2624
2570	$5 + \left(\sum_{i=1}^{n-1} \operatorname{steps}(t)(bs')\right) + \operatorname{steps}(t)([]) + 9 + 2^n + 2^{n+1}$	2625
2571	$\int \left(\sum_{h \notin \mathbb{C}\mathbb{R}^*} \operatorname{steps}(v)(v) \right) + \operatorname{steps}(v)(v) + 2 + 2$	2626
2572	= (rewrite as unary sum)	2627
2573	$1 \le bs' \le n \qquad \qquad 0 \le bs' \le 0$	2628
2574	$5 + \sum_{i=1}^{n} \operatorname{steps}(t)(bs') + \sum_{i=1}^{n} \operatorname{steps}(t)(bs') + 9 * 2^{n} + 2^{n+1}$	2629
2575	$bs' \in \mathbb{B}^*$	2630
2576	= (merge sums)	2631
2577	$\sum_{n=1}^{n} \left(\sum_{j=1}^{n} \sum_{j=1}^{n} (j) (j \neq j) \right) + 2 \sum_{j=1}^{n} \sum_{j=1}^{n} (j) (j \neq j) $	2632
2578	$5 + \left[\sum_{t \in \mathbb{Z}^{n}} \operatorname{steps}(t)(bs) \right] + 9 * 2^{n} + 2^{n+2}$	2633
2579	$= (\stackrel{bs' \in \mathbb{B}^*}{\text{definition of } O})$	2634
2580	$\frac{ }{ } = \frac{ }{ $	2635
2581	$\left(\sum_{i=1}^{n} \operatorname{steps}(t)(bs')\right) + O(2^n)$	2636
2582	$\left(\begin{array}{c} \sum \\ bs' \in \mathbb{R}^* \end{array}\right)$	2637
2583	_	2638
2584		2639
2585	24	2640

2641 C Proof Details for the No Shortcuts Lemma

The proof of Lemma 5.13 rely on the fact that any *n*-standard predicate has a canonical form. Section C.1 disseminate canonical
 predicates, whilst Section C.2 proves Lemma 5.13.

C.1 Canonical Predicates

The decision tree model (Definition 5.2) captures the interaction between a given predicate P and its point p. The interior nodes correspond to those places where P queries p, whilst the leaves represent answers ultimately conferred from the dialogue between the predicate and its point.

The abstract nature of the decision tree model means that concrete syntactic structure of the predicate is lost. Thus we cannot hope to reconstruct a particular predicate from its model. Indeed many syntactically distinct predicates may share the same model. However, we can construct *some* predicate from a given model, namely, the *canonical predicate*. Intuitively, the canonical predicate P' of P is a predicate which exhibits the same dialogue as P for every (valid) point.

Let $\mathcal{U}(P) := bs \mapsto \mathcal{T}(P)(bs)$.1 denote the procedure for constructing an *untimed decision tree* of a given predicate *P*.

Definition C.1 (Canonical predicate). A canonical predicate P' of an *n*-standard predicate P is itself an *n*-standard predicate whose body (syntactically) consists entirely of **let**-bindings of point applications and whose continuation is either another **let**-expression of the same form or **return** *b* for some boolean *b*. Moreover, P' exhibits the same dialogue as *P*, that is for all $bs \in \mathbb{B}^*$ such that $|bs| \le n$ that

$$\mathcal{U}(P)(bs) = \mathcal{U}(P')(bs)$$

Next we define a procedure for constructing canonical predicate of any given *n*-standard predicate.

Definition C.2 (Normalisation procedure for predicates). The meta-procedure norm takes as input an *n*-standard untimed decision tree, and outputs a program whose type is Point \rightarrow Bool, which is exactly the type of predicates. The procedure makes use of an auxiliary procedure body to generate the predicate body.

2666	norm : ($(\mathbb{B}^* \to Lab) \to Val$	
2667	$norm(t) := \lambda$	$\lambda p^{\text{Point}}.\text{body}(t, [], p)$	
2668	hadu . ((D* , Lab) x D* x Val , Comp	
2669	body : ($\square \rightarrow Lab \times \square \times Val \rightarrow Comp$	/• \ .•
2670		return b	t(bs) = !b
2671	1 + (i + 1)	let $b \leftarrow p i$ in	
2672	body(t, bs, p) := c	$\mathbf{if} \ h \mathbf{then} \ hody(t \mathbf{true} u \mathbf{h} \mathbf{c} \mathbf{r})$	if $t(hs) = -2i$
2673		If v then $body(i, true vs, p)$	$\ln t(b3) = t$
2674		(else body(t, false :: bs, p)	

As convenient notation we write norm(P) to mean norm($bs \mapsto \mathcal{U}(P)(bs)$). Next we show that the meta-procedure norm produces canonical predicates.

Lemma C.3. Suppose P is an n-standard predicate then $P' := \operatorname{norm}(P)$ is an n-standard predicate such that for all $bs \in \mathbb{B}^*$, $|bs| \leq n$

$$\mathcal{U}(P)(bs) = \mathcal{U}(P)(bs')$$

Proof. By induction on *n* and body.

Lemma C.4. The procedure norm generates canonical predicates.

Proof. First observe that the syntax produced by the body procedure of norm conforms with the syntactic restrictions of
 canonical predicates (Definition C.1). The rest follows as by Lemma C.3.

2689 C.2 No Shortcuts

We now have the necessary machinery to show that every *n*-count program in λ_b has at least exponential time complexity. The following lemma is a copy of Lemma 5.13.

Lemma C.5. Let P be an n-standard predicate. Suppose C is an n-count program, then C must apply P to at least 2^n distinct n-points.

Proof. Proof by contradiction. Pick a boolean sequence $bs \in \mathbb{B}^n$. Suppose there exists an *n*-count program C which does not construct the critical point p_c corresponding to bs. Let b be the answer yielded by P p. Now construct a predicate P' which yields the same answers as P except that at p_c it yields $\neg b$. Such a predicate can be constructed by negating b in the untimed decision tree model of P, i.e. (, . . . 1 /

$$t' := bs' \mapsto \begin{cases} \neg b & \text{if } bs = bs' \\ \mathcal{U}(P)(bs') & \text{otherwise} \end{cases}$$

Then P' = norm(t') constructs a canonical predicate, whose count is either one less or one more than that of P, that is at bs we have |C(P')(bs) - C(P)(bs)| = 1because $[] \sqsubset bs$ we further obtain that |C(P')([]) - C(P)([])| = 1. Now there are two cases to consider: 1. If C P = C P' then C cannot be an *n*-count program, because $C(P)([]) \neq C(P')([])$, which contradicts the assumption. 2. If $C P \neq C P'$ then we continue to reason about the length of the reduction sequences arising from applications of P and P'. **Lemma C.6.** Let $\mathcal{F}[-]$ be any multi-hole context in C such that $\mathcal{F}[P] = CP$ and the type of $\mathcal{F}[P]$ is either Nat or Bool. If $\mathcal{F}[P] \rightsquigarrow^m$ return V then $\mathcal{F}[P'] \rightsquigarrow^*$ return V where the type of V is either Nat or Bool. *Proof.* Proof by induction on the length of the reduction sequence, *m*. **Base step** We have that m = 0 which implies $\mathcal{F}[P] \rightarrow^0$ return V from which it follows that $\mathcal{F}[-]$ is simply return V, thus it follows immediately that $\mathcal{F}[P'] \rightsquigarrow^0$ return *V*. **Induction step** We have that m = 1 + m'. The induction hypothesis is $\forall \mathcal{F}.\mathcal{F}[P] \rightsquigarrow^{m'} \text{ return } V \text{ implies } \mathcal{F}[P'] \rightsquigarrow^* \text{ return } V.$ There are two cases to consider depending on whether applications of *P* occur in \mathcal{F} . **Case** $\mathcal{F}[P]$ is not an application of *P*. By assumption there is at least one reduction step, unroll this step to obtain $\mathcal{F}[-] \rightsquigarrow \mathcal{F}'[-] \rightsquigarrow^{m'}$ return V Now plug in P' and then the result follows by a single application of the induction hypothesis. **Case** $\mathcal{F}[P]$ is an application of P. It must be that P is applied to values of type Point. Moreover by assumption, we know that denotation of those values are distinct from the critical point p_c . Now write $\mathcal{F}[P] = \mathcal{G}[P, P p[P]]$ such that the first component of \mathcal{G} tracks residuals of P and the second component focuses on the expression in evaluation position, which in our particular case is an application of P to some point p in which P may occur again. We need to show that $\mathcal{G}[P, P p[P]] \rightsquigarrow \mathcal{G}[P, \mathbf{return} W] \rightsquigarrow \mathbf{return} V$ for some W: Bool. Looking at the reduction sequence modulo $\mathcal{G}[P, -]$, we have that $P p[P] \rightsquigarrow^+ \mathcal{F}_0[p[P] i_0] \rightsquigarrow \mathcal{F}_0[return V_0] \rightsquigarrow^+ \mathcal{F}_1[p[P] i_1] \rightsquigarrow \cdots \rightsquigarrow^+ return W$, where each reduction step is justified by the untimed decision tree model of *P*. From this we can deduce that $\mathcal{G}[P, P \ p[P]] \rightsquigarrow^+ \mathcal{G}[P, \mathbf{return} \ W] \rightsquigarrow^* \mathbf{return} \ V$ where the last step follows by the induction hypothesis and V: Bool. Now, we argue that the above reduction sequence is tracked by $\mathcal{G}[P', -]$. The *n*-standardness of P' guarantees that it contains *n* queries, and moreover, since the decision tree model for P' is the same as P except for at one leaf, we know that the queries appear the in same order, so by appeal to the decision tree for P' we obtain that $P' p[P'] \rightsquigarrow^+ \mathcal{F}'_0[p[P'] i_0]$ The term in evaluation position corresponds exactly to the first query node in the decision tree model. Now we can apply the induction hypothesis to obtain $\mathcal{F}_0'[p[P'] i_0] \rightsquigarrow^* \mathcal{F}_0'[\mathbf{return} V_0]$ The value V_0 is exactly the same answer to p i_0 as P obtained. Now there are two cases to consider depending on the value of *n*. If n = 1 then by the 1-standardness of *P'* we know that there will be no further queries, and it ultimately yields the same W as P p, because by assumption $p \neq p_c$. Otherwise if n > 1 then there must be further queries, and in particular, those queries must occur in the same order as those of P. Thus by the n-standardness of P' we get $\mathcal{F}'_0[$ **return** $V_0] \rightsquigarrow^+ \mathcal{F}'_1[p[P'] i_1]$ Yet again we find ourselves in a position where we can again apply the induction hypothesis to obtain an answer. By repeating this argument n times, we get that P' p eventually yields W, we can lift this back into the outer context to obtain $\mathcal{G}[P', P' p[P']] \rightsquigarrow^+ \mathcal{G}[P', \mathbf{return} W]$ and by the induction hypothesis, we get that $\mathcal{G}[P', \text{return } W] \rightsquigarrow^* \text{return } V.$ Recall that $CP \neq CP'$, but by the Context Lemma C.6 both CP and CP' reduce to the same value which contradicts the initial assumption. **Proof Details for the No Sharing Lemma** D The following lemma is a copy of Lemma 5.18. **Lemma D.1.** Suppose P is an n-standard predicate and C is an n-count program, and let p_0 and p_1 be distinct n-points, then the predicate applications $P p_0$ and $P p_1$ within C have disjoint threads. *Proof.* Let $T_0 = \text{Th}(P p_0, \mathbb{P}[\![p_0]\!])$ and $T_1 = \text{Th}(P p_1, \mathbb{P}[\![p_1]\!])$ be the threads arising from the two distinct predicate applications. Suppose, without loss of generality, that *P* is applied to p_0 before p_1 , that is $CP \rightarrow^+ \mathcal{E}_0[P p_0] \rightarrow^+ \mathcal{E}_1[P p_1] \rightarrow^+ \cdots$ which by Lemma 5.16 implies that T_0 starts before T_1 . There are now two possible cases to consider. 1. T_0 finishes before T_1 starts. It follows immediately that T_0 and T_1 are disjoint. 2. T_1 starts in between the sections of T_0 . We now argue that T_1 must finish before evaluation of T_0 can continue. Suppose for any i < n that the *i*-th query q_i starts T_1 , i.e $\mathcal{E}_i[p_0 q_i] \rightsquigarrow \mathcal{E}_i[\mathcal{E}'[P p_1]]$ then by the '*n*-ness' of *C*, *P*, and p_1 and since the reduction relation \rightarrow is deterministic it follows that \mathcal{E}' reduces to a boolean value W which is plugged into the continuation of $\mathcal{E}_i[-]$ $\mathcal{E}_i[p_0 q_i] \rightsquigarrow \mathcal{E}_i[\mathcal{E}'[P p_1]] \rightsquigarrow^+ \mathcal{E}_i[\text{return } W]$ Thus, T_1 must finish executing before evaluation of T_0 can resume. П