
Composing UNIX with Effect Handlers (Extended Abstract)
A Case Study in Effect Handler Oriented Programming

Daniel Hillerström
Laboratory for Foundations of Computer Science

The University of Edinburgh, Scotland, UK
daniel.hillerstrom@ed.ac.uk

ABSTRACT
Effect handler oriented programming (EHOP) is a paradigm in
which programs are syntaxwhose semantics are compartmentalised
into a collection of effect handlers. The separation of syntax and
semantics provides a modular basis for building software, where
programs can be retrofitted with more functionality in a backwards
compatible way. My talk proposal is about demonstrating EHOP in
practice by implementing a tiny UNIX-style operating system.

NOTICE
If you wish to cite this work, I ask that you cite my PhD thesis as it
is, at the time of writing, the authoritative source on this material.

1 INTRODUCTION
Plotkin and Pretnar’s effect handlers [12] provide a versatile abstrac-
tion for programming with Plotkin and Power-style computational
effects [11], where programs are written with respect to an abstract
interface of effect operations they expect to be able to perform in
their environment. Programs can be run in any environment that
supplies a conforming implementation of this interface. The im-
plementation of this interface is supplied by a user-implementable
effect handler. A compelling trait of effect handlers is that multiple
handlers can cooperate through seamless composition to implement
an effect interface. The ability to seamlessly compose is the key
enabler for effect handler oriented programming, where implementa-
tions of effect interfaces are decomposed into several fine-grained
effect handlers, which can be combined in various ways to instanti-
ate the behaviour of programs.

With the imminent arrival of effect handlers in OCaml, effect
handler oriented programming will become available to ML pro-
grammers [15]. As an illustrative example of effect handler oriented
programming I will demonstrate how to implement the essence of
Ritchie and Thompson’s UNIX operating system by starting from a
tiny kernel and incrementally retrofit it with additional functional-
ity by composing ever more effect handlers [14]. Along the way I
will discuss the advantages of effect handler oriented programming
and point to avenues for further research to address its limitations.

2 THE EFFECTIVE ESSENCE OF UNIX
The key components of Ritchie and Thompson’s UNIX include
multi-tasking with time sharing of computing resources, multiple
user environments, a file system, and a programmable I/O inter-
face [14]. In this section I will briefly describe each of the aforemen-
tioned components can be realised in terms of standard textbook
effects. For the sake of brevity I will leave some of the more in-
tricate details for the presentation accompanying this extended

abstract (nonetheless, I will provide some pointers to more detailed
explanations for the impatient reader).

The key to modelling an UNIX-style operating systemwith effect
handlers is to view system calls as operations of an effect interface.
In addition, we will view computations as processes.

2.1 Exceptions: Process Termination
A process may terminate successfully by running to completion, or
it may terminate with success or failure in the middle of some com-
putation by performing an exit system call. The exit system call is
parameterised by an integer value intended to indicate whether the
exit was due to success or failure. By convention, UNIX interprets
the integer zero as success and any nonzero integer as failure. We
can model the exit system call as a single operation Exit.

Status = {Exit : Int↠ ∀𝛼.𝛼}

The operation is parameterised by an integer value, however, an
invocation of Exit can never return, because its return type is unin-
habited. Thus invoking Exit is like throwing an exception in, say,
vanilla OCaml. An implementation of Exit is an exception handler.

status : (1→ 𝛼!Status) → ⟨Int,Option 𝛼⟩
status m = handle m ⟨⟩ with

return x ↦→ ⟨0, Some x⟩
⟨⟨Exit n⟩⟩ ↦→ ⟨n,None⟩

The status function takes as input a thunk which may perform
the Exit operation whilst computing a value of type 𝛼 . Ultimately,
status returns a pair consisting of an integer and an optional 𝛼 .
This is a Benton and Kennedy [2] style handler with a return-
case which tags the return value x with Some and pairs it with
the integer zero. The operation case returns the payload n of Exit
paired with None. Figure 1a depicts two example usages of status,
where the first process terminates successfully, whilst the second
process terminates prematurely with exit code 1.

2.2 Dynamic Binding: Environments
When a process is run in UNIX, the operating system makes avail-
able to the process a collection of name-value pairs called the envi-
ronment. The name of a name-value pair is known as an environment
variable. During execution the process may perform a system call
to ask the operating system for the value of some environment vari-
able. The value of some environment variables may vary according
to which user enquires the environment. For example, an environ-
ment may contain the environment variable USER that is bound to
the name of the enquiring user. Thus we may view environment
variables as dynamically bound variables, whose values depend on
the dynamic context rather than the lexical context.

Daniel Hillerström

status (𝜆⟨⟩.42)
{+ ⟨0, Some 42⟩

status (𝜆⟨⟩.do Exit 1; 42)
{+ ⟨1,None⟩

(a) Process Termination

sessionmgr ⟨Root,
status (𝜆⟨⟩.do Su Alice;

whoami ⟨⟩)⟩
{+ ⟨0, Some "alice"⟩

(b) Substitute User

nondet (𝜆⟨⟩.sessionmgr ⟨Root,
status (𝜆⟨⟩.init main)⟩)

{+ [⟨0, Some "bob"⟩, ⟨0, Some "alice"⟩, ⟨0,None⟩]

(c) Multiple Processes with Distinct Environments

Figure 1: Examples with Exceptions, Dynamic Binding, and Nondeterminism

We will make a gross simplification as our environments will
contain only the USER environment variable. The interface for en-
vironments consists of a single operation.

Env = {Ask : 1↠ String}

The intended behaviour of Ask is to return the name of the enquir-
ing user. Thus using this operation we can readily implement the
whoami utility from the GNU coreutils [10, Section 20.3].

whoami : 1→ String!Env
whoami ⟨⟩ = do Ask ⟨⟩

For simplicity we fix the users of the operating system to be root,
Alice, and Bob, i.e.User = Alice | Bob | Root. The following handler
provides an implementation of the Env interface by making use of
delimited continuations.

env : ⟨User, 1→ 𝛼!Env⟩ → 𝛼

env ⟨user,m⟩ = handle m ⟨⟩ with
return res ↦→ res
⟨⟨Ask ⟨⟩ ↠ resume⟩⟩ ↦→

case user {Alice ↦→ resume "alice"
Bob ↦→ resume "bob"
Root ↦→ resume "root"}

The handler takes as input the current user and a process that
may perform the Ask operation. The operation case for Ask expose
an additional parameter resume which is the current continuation
of Ask in m. The extent of this continuation is delimited by the
handler. The right hand side of the operation case pattern matches
on the user parameter and invokes the continuation with a string
representation of the user. The continuation invocation is implicitly
guarded by the handler such that subsequent invocations of Ask get
handled by the same handler. This type of handler is said to be tail-
resumptive, because it invokes the continuation in tail-position [17]

2.2.1 Session management. It is somewhat pointless to have mul-
tiple user-specific environments, if the system does not support
some mechanism for switching user session. In UNIX the command
substitute user (su) enables the invoker to impersonate another user
account. We will model su as a singleton effect interface.

SubUser = {Su : User↠ 1}

The operation Su is parameterised by the user to be impersonated.
The intended operational behaviour of an invocation of Su user

is to load the environment belonging to user and continue the con-
tinuation under this environment. We can achieve this behaviour
by defining a handler for Su that invokes the provided continuation

under a fresh instance of the env handler.

sessionmgr : ⟨User; 1→ 𝛼!SubUser ⊗ Env⟩ → 𝛼

sessionmgr ⟨user ;m⟩
= env⟨user ; (𝜆⟨⟩.handle m ⟨⟩ with

return res ↦→ res
⟨⟨Su user ′ ↠ resume⟩⟩ ↦→ env⟨user ′; resume⟩)⟩

The function sessionmgr manages a user session. It takes two argu-
ments: the initial user (user) and a suspended process (m) to run in
the current session. The suspended process may perform operations
from both SubUser and Env interfaces. An initial instance of env is
installed with user as argument along with a computation whose
body is a handler for Su enclosing the process m. The Su-case in-
stalls a new instance of env, which is the environment belonging
to user ′, and runs the continuation resume under this instance. The
new instance of env shadows the initial instance, meaning it will in-
tercept and handle residual occurrences of Ask in the continuation.
Each subsequent invocation of Su will install another environment
instance, which will shadow the previous environment. Figure 1b
shows an example of switching user session.

2.3 Nondeterminism: Process Duplication
The process duplication primitive in UNIX is called fork [14]. The
fork-invoking process is typically referred to as the parent process,
whilst its clone is referred to as the child process. Following an
invocation of fork, the parent process is provided with a nonzero
identifier for the child process and the child process is provided
with the zero identifier. This enables processes to determine their
respective role in the parent-child relationship, e.g.

let i← fork ⟨⟩ in
if i = 0 then child’s code
else parent’s code

We will make another simplification here as we will model fork
as an effect operation that returns a boolean value to indicate the
process role; by convention we will interpret the return value true
to mean that the process assumes the role of parent.

ProcDup = {Fork : 1↠ Bool}

In UNIX the parent process continues execution after the fork point,
and the child process begins its execution after the fork point. Op-
erationally, we may understand fork as returning twice to its in-
vocation site. We can implement this behaviour by invoking the
continuation of Fork twice: first with true to continue the parent

Composing UNIX with Effect Handlers (Extended Abstract)

process, and subsequently with false to start the child process.

nondet : (1→ 𝛼!ProcDup) → List 𝛼
nondet m = handle m ⟨⟩ with

return res ↦→ [res]
⟨⟨Fork ⟨⟩ ↠ resume⟩⟩ ↦→ resume true ++ resume false

The function nondet accepts a suspended process that may dupli-
cate itself as input. The function ultimately returns a list containing
the result of all parent and child processes. The return-case returns
a singleton list containing a result of running m. The Fork-case
invokes the provided continuation resume twice. Each invocation of
resume effectively copiesm and runs each copy to completion. Each
copy returns through the return-case, hence each invocation of
resume returns a list of the possible results obtained by interpreting
Fork first as true and subsequently as false. The results are joined
by list concatenation (++). Thus the handler returns a list of all the
possible results of m.

We can implement something akin to the UNIX init process [14].

init : (1→ 𝛼) → 1!ProcDup ⊗ Status
init m = if do Fork ⟨⟩ then do Exit 0

else m ⟨⟩

The init process uses the ProcDup and Status effects, and whatever
effects its parameter m uses (effect polymorphism is implicit as
in Frank [9]). This implementation does not faithfully replicate
the behaviour of the init process as it may terminate before its
child processes. For a more accurate implementation of init we
require the full generality of UNIX fork (e.g. see [6, Section 5.4.3]).
Nevertheless, we can implement a main process that utilises the
interfaces we have defined thus far.

main : 1→ String!ProcDup ⊗ SubUser ⊗ Env
main ⟨⟩ = if do Fork ⟨⟩ then do Su Alice;whoami ⟨⟩

else do Su Bob;whoami ⟨⟩

Figure 1c depicts a possible instantiation of main.

2.3.1 Time-sharing. Whilst the nondet handler gives us the ability
to create multiple processes, it does not give us any way to inter-
leave computation. In order to implement time sharing of comput-
ing resources we need two things: 1) some interruption mechanism
that injects instances of an operation Interrupt : 1↠ 1 to preempt
a running process, and 2) a process scheduler that decides which
process to run next. There are multiple ways to inject operations.
If we have complete control of the runtime, then we can use the
model of Ahman and Pretnar [1] and have some external mech-
anism inject operations. Alternatively, we can inject operations
ourselves by bundling them alongside other operation invocations
(this akin to Dybvig and Hieb [3], who hide interruptions under
𝜆-abstractions via macro-expansion). The latter approach requires
some care, because we risk Interrupt annotations pervading all
contexts if we inject operations at the invocation site of other op-
erations. A better approach is to install an intermediate handler
that intercepts and reperforms operations, but before reperforming
an operation it performs an instance of Interrupt. I will leave the
finer details of how to implement time-sharing for the talk. For
an in-depth discussion of the aforementioned approaches see [6,
Section 5.2.4] and for an implementation of a basic time-sharing

system (supporting the full generality of UNIX fork) see [6, Section
5.4.3].

2.4 Global State: File System
The file system is an integral part of UNIX. We can model it as a
particular instance of the well-known global mutable state effect.

FileSys = {Get : 1↠ FileSystem, Put : FileSystem↠ 1}

An implementation of this interface is the standard state-passing
handler [12]. I will leave the structure of FileSystem abstract.

2.4.1 File I/O. To manipulate the file system we provide two inter-
faces for opening/closing and reading/writing files, respectively.

COC = {Create : String↠ Int,Open : String↠ FD,
Close : FD↠ 1}

RW = {Read : ⟨FD, Int, Int⟩ ↠ Option String,
Write : ⟨FD, String⟩ ↠ 1}

Like UNIX, we are going to throw caution to wind and model
file descriptors (FD) as raw pointers into the global FileSystem
structure. Implementing these interfaces is not too hard it just
involves low-level manipulations of the FileSystem structure (see
[6, Section 5.2.5] for an implementation of a basic file system).

2.4.2 I/O Redirection. The file I/O redirection operators > and >>

can readily be implemented using Create, Open, andWrite.

2.5 Streams: Programmable I/O
UNIX pipes and filters make up an important part of the UNIX
programming experience [13, 14]. In previous work, it has already
been shown how to implement these facilities using shallow han-
dlers [4, 5, 7, 9]. Shallow handlers are an alternative to Plotkin and
Pretnar’s deep handlers. The key difference is that a shallow handler
does not wrap the handler around the continuation, which makes
it easy to implement a pair of dual handlers that simulate a data
stream by alternating between producing and consuming values.

3 A HANDLER SEMANTICS FOR UNIX
Plotkin and Power [11] attach equational theories to effect inter-
faces, which govern the behaviour of operations. As with most
practical implementations of effect handlers, I am working in the
free theory. I have made no effort to prove the full implementation
of the system correct with respect to an equational specification of
UNIX. The complete system is composed from 12+ handlers, where
the ‘+’ covers the handlers used internally by user processes. How-
ever, in the preceding section I have alluded to the fact that many of
the handlers are instances of standard handlers that are known to
respect the equational theories of the effects they implement. Thus
I conjecture that it is within the realm of immediate possibilities to
give an equational specification of the core components of UNIX
and prove the system correct with respect to this specification.

4 RELATEDWORK
The idea of using continuations to implement various facets of
operating systems is not new. For example, Wand [16] implements
a small multi-tasking kernel with support for mutual exclusion
and data protection using callcc-style continuations. Kiselyov and

Daniel Hillerström

Shan [8] use delimited continuations to implement a tiny operating
systemwith multi-tasking support and a sophisticated transactional
file system that makes it possible for user processes to roll back
actions such as file deletion and file update.

ACKNOWLEDGMENTS
Thanks to James McKinna, Gordon Plotkin, Sam Lindley, and Philip
Wadler for early comments and insightful discussions about this
work. This work was supported by the UKRI Future Leaders Fellow-
ship “Effect Handler Oriented Programming” (reference number
MR/T043830/1).

REFERENCES
[1] Danel Ahman and Matija Pretnar. 2021. Asynchronous effects. Proc. ACM

Program. Lang. 5, POPL (2021), 1–28.
[2] Nick Benton and Andrew Kennedy. 2001. Exceptional Syntax Journal of Func-

tional Programming. J. Funct. Program. 11, 4 (2001), 395–410.
[3] R. Kent Dybvig and Robert Hieb. 1989. Engines From Continuations. Comput.

Lang. 14, 2 (1989), 109–123.
[4] Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers. In APLAS

(LNCS, Vol. 11275). Springer, 415–435.
[5] Daniel Hillerström, Sam Lindley, and Robert Atkey. 2020. Effect handlers via

generalised continuations. J. Funct. Program. 30 (2020), e5.
[6] Daniel Hillerström. 2021. Foundations for Programming and Implementing Effect

Handlers. Ph.D. Dissertation. The University of Edinburgh, Scotland, UK.
[7] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ICFP.

ACM, 145–158.
[8] Oleg Kiselyov and Chung-chieh Shan. 2007. Delimited Continuations in Operat-

ing Systems. In CONTEXT (LNCS, Vol. 4635). Springer, 291–302.
[9] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In

POPL. ACM, 500–514.
[10] David MacKenzie et al. 2020. GNU Coreutils. Free Software Foundation. For

version 8.32.
[11] Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic

Effects. Applied Categorical Structures 11, 1 (2003), 69–94.
[12] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical

Methods in Computer Science 9, 4 (2013).
[13] Eric Steven Raymond. 2003. The Art of UNIX Programming. Pearson Education.
[14] Dennis Ritchie and Ken Thompson. 1974. The UNIX Time-Sharing System.

Commun. ACM 17, 7 (1974), 365–375.
[15] KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and

Anil Madhavapeddy. 2021. Retrofitting effect handlers onto OCaml. In PLDI.
ACM, 206–221.

[16] Mitchell Wand. 1980. Continuation-Based Multiprocessing. In LISP Conference.
ACM, 19–28.

[17] Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp
Schuster, and Daan Leijen. 2020. Effect handlers, evidently. Proc. ACM Program.
Lang. 4, ICFP (2020), 99:1–99:29.

	Abstract
	1 Introduction
	2 The Effective Essence of UNIX
	2.1 Exceptions: Process Termination
	2.2 Dynamic Binding: Environments
	2.3 Nondeterminism: Process Duplication
	2.4 Global State: File System
	2.5 Streams: Programmable I/O

	3 A Handler Semantics for UNIX
	4 Related Work
	Acknowledgments
	References

