
Introduction to Effect Handler Oriented Programming in C++

Daniel Hillerström

Computing Systems Laboratory
Zürich Research Center

Huawei Technologies Switzerland

June 29, 2023



C++Effects: A library for effect handler oriented programming



Talk objective

Demonstrate effect handler-oriented programming by example
Implement a tiny tasking library;
supporting task-local state;
and task fault recovery



Example 1: Dynamic binding (1)

The state passing technique explicitly ‘threads’ the value through the entire computation.

1

4

A

A

A

2

5

B

B

B

3

6

C

C

C

4

8

D

D

D

Relevant code: examples/ex1/state_passing.cpp



Example 1: Dynamic binding (2)

The environment handler provides a context-dependent variable.

1

4

A

ask

ask

2

5

B

ask

ask

3

6

C

ask

ask

4

8

D

ask

ask

Relevant code: examples/ex1/env.hpp and examples/ex1/env_main.cpp



The programmer’s perspective on effect handlers

Related familiar programming abstractions
Coroutines
Generators
Lightweight threads
Resumable exceptions
First-class continuations

Executive summary

Effect handlers offer a modern interface for highly composable and customisable programming with
non-local control flow. Effect handlers subsume all classic ad-hoc control abstractions.



The programmer’s perspective on effect handlers

Related familiar programming abstractions
Coroutines
Generators
Lightweight threads
Resumable exceptions
First-class continuations

Executive summary

Effect handlers offer a modern interface for highly composable and customisable programming with
non-local control flow. Effect handlers subsume all classic ad-hoc control abstractions.



A new programming paradigm

Procedure-oriented programming
Imperative steps organised as logical sub-routines

Object-oriented programming
Encapsulation of data and behaviour in objects

Function-oriented programming
Abstraction through higher-order functions

Effect handler-oriented programming
Interaction with the execution context via continuations



Example 2: Lightweight threads

The scheduler handler reifies each task computation as a first-class object.

1

4

A

A

A

2

5

B

B

B

3

6

C

C

C

4

8

D

D

D

Relevant code: examples/ex2/lwt.hpp and examples/ex2/lwt_main.cpp



Example 3: Task-local state

We obtain task-local state by composing the scheduler and environment handlers.

1

4

A

ask

ask

2

5

B

ask

ask

3

6

C

ask

ask

4

8

D

ask

ask

Relevant code: examples/ex3/lwtenv_main.cpp



Example 4: Transactional state

We add transactional state by composing yet another handler.

1

1

A

2

5

B

3

3

C

4

8

D

Relevant code: examples/ex4/rollback.hpp and examples/ex4/rollback_main.cpp



Summary

Summary
Effect handlers offer modular and composable control
Common control abstractions are implementable as libraries
Separation of interface and implementation through continuations
Extend functionality by composing fine-grained and agnostic handlers



References

Plotkin, Gordon D. and Matija Pretnar (2013). “Handling Algebraic Effects”. In: Logical Methods in
Computer Science 9.4.

Hillerström, Daniel (2021). “Foundations for Programming and Implementing Effect Handlers”.
PhD thesis. The University of Edinburgh, Scotland, UK.

Ghica, Dan et al. (2022). “High-Level Type-Safe Effect Handlers in C++”. In: Proc. ACM Program.
Lang. 6.OOPSLA, pp. 1–30.


	References

