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WebAssembly (Wasm): neither web nor assembly (Haas et al. 2017)

What is Wasm?
A low-level virtual machine
Source language agnostic
Platform independent target
Formally specified1 and mechanised
A predictable performance model

Code format
A Wasm “program” is a structured module
Designed for streaming compilation
The term language is statically typed and block-structured
Control flow is structured (i.e. all CFGs are reducible)

https://webassembly.org

1Wasm 1.0 has a tiny bit of nondeterminism related to floating point NaNs

https://webassembly.org


Wasm primer: stack machine

Stack machine

(i32.const 2)

(i32.const 5)

(i32.add)

−→ (i32.const 7)

Syntactic sugar: (i32.add (i32.const 2) (i32.const 5))



Wasm primer: stack machine

Stack machine

(i32.const 2)

(i32.const 5)

(i32.add) −→ (i32.const 7)

Syntactic sugar: (i32.add (i32.const 2) (i32.const 5))



Wasm primer: stack machine

Stack machine

(i32.const 2)

(i32.const 5)

(i32.add) −→ (i32.const 7)

Syntactic sugar: (i32.add (i32.const 2) (i32.const 5))



Wasm primer: stack typing

Stack typing

(i32.const 2) : [] → [i32]
(i32.const 5) : [] → [i32]
(i32.add) : [i32 i32] → [i32]



Wasm primer: structured control flow (1)

Structured control flow
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...
(br $l)
...
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(loop $l
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Wasm primer: structured control flow (2)

Structured control flow

;; type : [] -> [i32]
(block $l (result i32)
...
(br $l (i32.const 5))
...

)

;; type: [i32] -> []
(loop $l (param i32)
...
(br $l (i32.const 5))
...

)

break continue



Wasm 1.0 & 2.0+
Wasm 1.0 is tailored for C/C++

The instruction set is an intersection of modern CPUs
Memory model: a flat array of bytes
Data types: i32, i64, f32, f64
Modules, functions, and tables

Wasm 2.0 includes high-level language support
Tail calls
Typed function references
Exception handling
Garbage collection
SIMD v128 data type (accounts for 236 out of 437 instructions)

Beyond Wasm 2.0
Multithreading
Memory64
Higher-order modules
First-class control (this talk!)
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The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution

Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)
Add each abstraction as a primitive to Wasm
Use effect handlers as a unified modular basis for control in Wasm
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WasmFX at glance

WasmFX is a minimal and compatible extension
1 new data type
6 new instructions (3 are core, 3 are nice-to-have)
No new block structure

WasmFX uses effect handlers to manage stacks
Modular and extensible basis for stack switching

Structured form of delimited control (intuition: first-class resumable exceptions)
Easy encoding of your favourite abstraction
Control abstractions compose (due to effect forwarding)

Based on practical evidence
100+ peer reviewed papers
Available in many programming languages (e.g. C++, Haskell, Pyro, OCaml, Unison)
Deployed in industrial technologies (e.g. GitHub’s semantic, Meta’s React, Uber’s Pyro)

Restriction: single-shot continuations



Why effect handlers

Any control extension must work

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predicable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing
compatible with builtin side-effects
transparent cost of instructions
seamless interop
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Variations on semantics of effect handlers
Deep allocation, capture, and resumption

cont.new V with H ⇝ cont⟨H;V ⟩, where V = λ⟨⟩.M
resume V with W ⇝ handle E [W ] with H, where V = cont⟨H;E⟩

handle E [op V ] with H ⇝ N[cont⟨H;E⟩/r ,V /x ], where {op p r 7→ N} ∈ H

Shallow allocation, capture, and resumption

cont.new V ⇝ cont⟨V ⟩, where V = λ⟨⟩.M
resume V with W ⇝ E [W ], where V = cont⟨E⟩

handle E [op V ] with H ⇝ N[cont⟨E⟩/r ,V /x ], where {op p r 7→ N} ∈ H

‘Sheep’ allocation, capture, and resumption

cont.new V ⇝ cont⟨V ⟩, where V = λ⟨⟩.M
resume V with ⟨H;W ⟩ ⇝ handle E [W ] with H, where V = cont⟨E⟩
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Coroutines in WasmFX

‘Seesaw’ coroutines (Ganz, Friedman, and Wand 1999).

$up

$down

We will have two modules
co2 implementing the coroutine runtime
example interleaved streams of natural numbers



Running example: coroutines (1)

;; interface for running two coroutines
;; non-interleaving implementation
(module $co2
;; type alias task = [] -> []
(type $task (func))

;; yield : [] -> []
(func $yield (export "yield")
(nop))

;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
;; run the tasks sequentially
(call_ref $task (local.get $task1))
(call_ref $task (local.get $task2))

)
)



Running example: coroutines (2)
(module $example ;; main example: streams of odd and even naturals
...
;; imports yield : [] -> []
(func $yield (import "co2" "yield"))

...
)



Running example: coroutines (3)
(module $example
...
;; odd : [i32] -> []
;; prints the first $niter odd natural numbers
(func $odd (param $niter i32)
(local $n i32) ;; next odd number
(local $i i32) ;; iterator
(local.set $n (i32.const 1)) ;; initialise locals
(local.set $i (i32.const 1)) ;; ...
(block $b
(loop $l
(br_if $b (i32.gt_u (local.get $i) (local.get $niter))) ;; termination condition
(call $print (local.get $n)) ;; print the current odd number
(local.set $n (i32.add (local.get $n) (i32.const 2))) ;; compute next odd number
(local.set $i (i32.add (local.get $i) (i32.const 1))) ;; increment the iterator
(call $yield) ;; yield control
(br $l)))) ;; repeat

;; even : [i32] -> []
;; prints the first $niter even natural numbers
(func $even (param $niter i32) ...)
...

)



Running example: coroutines (4)
(module $example
...
;; odd5, even5 : [] -> []
(func $odd5 (export "odd5")

(call $odd (i32.const 5)))
(func $even5 (export "even5")

(call $even (i32.const 5)))
)

;; calling $run with $odd5 and $even5...
(call $run (ref.func $odd5) (ref.func $even5))
;; ... prints 1 3 5 7 9 2 4 6 8 10



Instructions: declaring control tags

Control tag declaration
(tag $tag (param σ∗) (result τ∗))

it’s a mild extension of Wasm’s exception tags

(known in the literature as an ‘operation symbol’ (Plotkin and Pretnar 2013))



Refactoring the co2 module (1)

(module $co2
;; type alias task = [] -> []
(type $task (func))

;; yield : [] -> []
(tag $yield)

;; yield : [] -> []
(func $yield (export "yield")
(nop))

;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
...)

)



Instructions: creating continuations

Continuation type
(cont $ft)

cont is a new reference type constructor parameterised by a function type, $ft : [σ∗] → [τ∗]

Continuation allocation

cont.new $ct : [(ref null $ft)] → [(ref $ct)]

where $ft : [σ∗] → [τ∗]
and $ct : cont $ft



Refactoring the co2 module (2)
(module $co2
;; type alias $task = [] -> []
(type $task (func))

;; type alias $ct = $task
(type $ct (cont $task))

...

;; run : [(ref $task) (ref $task)] -> []
;; implements a ’seesaw’ (c.f. Ganz et al. (ICFP@99))
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
;; locals to manage continuations
(local $up (ref null $ct))
(local $down (ref null $ct))
(local $isOtherDone i32)
;; initialise locals
(local.set $up (cont.new $ct (local.get $task1)))
(local.set $down (cont.new $ct (local.get $task2)))
...)

)



Thinking of cont.new in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP (null)
SP
$task1
red zone

PP (null)
SP
$task2
red zone

cont.new allocates a new stack segment

New segments are initially suspended
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Instructions: invoking continuations

Continuation resumption

resume $ct (tag $tag $h)∗ : [σ∗ (ref null $ct)] → [τ∗]

where {$tagi : [σ
∗
i ] → [τ∗i ] and $hi : [σ∗

i (ref null $cti)] and
$cti : cont $fti and $fti : [τ

∗
i ] → [τ∗]}i

and $ct : cont $ft
and $ft : [σ∗] → [τ∗]

The instruction fully consume the continuation argument



Refactoring the co2 module (3)
(module $co2
... ;; declarations of $task, $yield, etc
;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
... ;; initialisation of $up and $down
;; run $up
(loop $h ;; handling loop
(block $on_yield (result (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $up)) ;; resume $up; handle $yield using $on_yield
(if (i32.eq (local.get $isOtherDone) (i32.const 1)) ;; $up finished; $down is already done?
(then (return))) ;; ... then exit

(local.get $down) ;; ... otherwise prepare to run $down
(local.set $up) ;; $up := $down
(local.set $isOtherDone (i32.const 1)) ;; mark other as done
(br $h) ;; repeat

) ;; yield-case definition; stack: [(cont $ct)]
(local.set $up) ;; set $up to the current continuation
(if (i32.eqz (local.get $isOtherDone)) ;; is $down already done?
(then (local.get $down) ;; ... then swap $up and $down

(local.set $down (local.get $up))
(local.set $up)))

(br $h))) ;; repeat
)



Thinking of resume in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP
SP
$task1
red zone

PP (null)
SP
$task2
red zone

resume transfers control from the parent to the
child stack

The pointer between parent and child is inverted
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Instructions: suspending continuations

Continuation suspension
suspend $tag : [σ∗] → [τ∗]

where $tag : [σ∗] → [τ∗]



Refactoring the co2 module (4)

(module $co2
;; type alias task = [] -> []
(type $task (func))
;; type alias ct = $task
(type $ct (cont $task))

;; yield : [] -> []
(tag $yield (param) (result))

;; yield : [] -> []
(func $yield (export "yield")
(suspend $yield))

;; run : [(ref $task) (ref $task)] -> []
;; implements a ’seesaw’ (c.f. Ganz et al. (ICFP@99))
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
... )

)

Now (call $run (ref.func $odd5) (ref.func $even5)) prints 1 2 3 4 5 6 7 8 9 10



Thinking of suspend in terms of stacks

PP (null)
SP
up
down
· · ·
contup
· · ·
red zone

PP
SP
· · ·
suspend

red zone

PP (null)
SP
$task2
red zone

suspend transfers control a child to a (grand)parent

The pointer between child and parent is inverted
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Current status of the proposal

What has already been done
Formal specification
Informal explainer documentation
Reference implementation
A proof-of-concept implementation in Wasmtime

What is happening now
Fine-tune the implementation

What is going to happen next
Gathering performance evidence



Preliminary performance results

Context switching microbenchmark

Relative speed Binary size Memory usage
Asyncify - 36 kb 66.0 mb
Bespoke 0.5× 27 kb 15.7 mb
WasmFX 0.25× 24 kb 63.9 mb

Table: Performance characteristics for webserver microbenchmark

Binary file size microbenchmarks

main-kjp.go coroutines.go
Asyncify 597 kb 40.0 kb
WasmFX 156 kb 7.2 kb

Table: Binary size comparison for TinyGo Programs



Summary

Summary
Effect handlers provide a modular and extensible basis for stack switching in Wasm
Effect handlers are a proven technology
WasmFX is a minimal and compatible extension to Wasm
Proof-of-concept implementation in Wasmtime

The work is actively being turned into a proposal; for more details see

https://wasmfx.dev

Comments and feedback are welcome!

https://wasmfx.dev
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Continuation binding, cancellation, and trapping

Partial continuation application

cont.bind (type $ct) : [σ∗
0 (ref null $ct)] → [(ref $ct ′)]

where $ct : cont $ft and $ft : [σ∗
0 σ

∗
1 ] → [τ∗]

and $ct ′ : cont $ft ′ and $ft ′ : [σ∗
1 ] → [τ∗]

Continuation cancellation

resume_throw (tag $exn) (tag $tag $h)∗ : [σ∗
0 (ref null $ct)] → [τ∗]

where $exn : [σ∗
0 ] → [], {$tagi : [σ

∗
i ] → [τ∗i ] and $hi : [σ∗

i (ref null $cti)] and
$cti : cont $fti and $fti : [τ

∗
i ] → [τ∗]}i

and $ct : cont ([σ∗] → [τ∗]

Control barriers
barrier $lbl (type $bt) instr∗ : [σ∗] → [τ∗]

where $bt = [σ∗] → [τ∗] and instr∗ : [σ∗] → [τ∗]
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