
Continuing WebAssembly with Effect Handlers

Daniel Hillerström

Computing Systems Laboratory
Zürich Research Center

Huawei Technologies Switzerland

April 26, 2023

I am but one of many

Sam Lindley Andreas Rossberg Daan Leijen KC Sivaramakrishnan

Matija Pretnar Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

WebAssembly (Wasm): neither web nor assembly (Haas et al. 2017)

What is Wasm?
A low-level virtual machine
Source language agnostic
Platform independent target
Formally specified1 and mechanised
A predictable performance model

Code format
A Wasm “program” is a structured module
Designed for streaming compilation
The term language is statically typed and block-structured
Control flow is structured (i.e. all CFGs are reducible)

https://webassembly.org

1Wasm 1.0 has a tiny bit of nondeterminism related to floating point NaNs

https://webassembly.org

Wasm primer: stack machine

Stack machine

(i32.const 2)

(i32.const 5)

(i32.add)

−→ (i32.const 7)

Syntactic sugar: (i32.add (i32.const 2) (i32.const 5))

Wasm primer: stack machine

Stack machine

(i32.const 2)

(i32.const 5)

(i32.add) −→ (i32.const 7)

Syntactic sugar: (i32.add (i32.const 2) (i32.const 5))

Wasm primer: stack machine

Stack machine

(i32.const 2)

(i32.const 5)

(i32.add) −→ (i32.const 7)

Syntactic sugar: (i32.add (i32.const 2) (i32.const 5))

Wasm primer: stack typing

Stack typing

(i32.const 2) : [] → [i32]
(i32.const 5) : [] → [i32]
(i32.add) : [i32 i32] → [i32]

Wasm primer: structured control flow (1)

Structured control flow

(block $l
...
(br $l)
...

)

(loop $l
...
(br $l)
...

)

break continue

Wasm primer: structured control flow (1)

Structured control flow

(block $l
...
(br $l)
...

)

(loop $l
...
(br $l)
...

)

break

continue

Wasm primer: structured control flow (1)

Structured control flow

(block $l
...
(br $l)
...

)

(loop $l
...
(br $l)
...

)

break

continue

Wasm primer: structured control flow (1)

Structured control flow

(block $l
...
(br $l)
...

)

(loop $l
...
(br $l)
...

)

break continue

Wasm primer: structured control flow (2)

Structured control flow

;; type : [] -> [i32]
(block $l (result i32)
...
(br $l (i32.const 5))
...

)

;; type: [i32] -> []
(loop $l (param i32)
...
(br $l (i32.const 5))
...

)

break continue

Wasm 1.0 & 2.0+
Wasm 1.0 is tailored for C/C++

The instruction set is an intersection of modern CPUs
Memory model: a flat array of bytes
Data types: i32, i64, f32, f64
Modules, functions, and tables

Wasm 2.0 includes high-level language support
Tail calls
Typed function references
Exception handling
Garbage collection
SIMD v128 data type (accounts for 236 out of 437 instructions)

Beyond Wasm 2.0
Multithreading
Memory64
Higher-order modules
First-class control (this talk!)

Wasm 1.0 & 2.0+
Wasm 1.0 is tailored for C/C++

The instruction set is an intersection of modern CPUs
Memory model: a flat array of bytes
Data types: i32, i64, f32, f64
Modules, functions, and tables

Wasm 2.0 includes high-level language support
Tail calls
Typed function references
Exception handling
Garbage collection
SIMD v128 data type (accounts for 236 out of 437 instructions)

Beyond Wasm 2.0
Multithreading
Memory64
Higher-order modules
First-class control (this talk!)

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution

Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)
Add each abstraction as a primitive to Wasm
Use effect handlers as a unified modular basis for control in Wasm

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution

Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)
Add each abstraction as a primitive to Wasm
Use effect handlers as a unified modular basis for control in Wasm

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution
Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)

Add each abstraction as a primitive to Wasm
Use effect handlers as a unified modular basis for control in Wasm

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution
Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)
Add each abstraction as a primitive to Wasm

Use effect handlers as a unified modular basis for control in Wasm

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution
Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)
Add each abstraction as a primitive to Wasm
Use effect handlers as a unified modular basis for control in Wasm

WasmFX at glance

WasmFX is a minimal and compatible extension
1 new data type
6 new instructions (3 are core, 3 are nice-to-have)
No new block structure

WasmFX uses effect handlers to manage stacks
Modular and extensible basis for stack switching

Structured form of delimited control (intuition: first-class resumable exceptions)
Easy encoding of your favourite abstraction
Control abstractions compose (due to effect forwarding)

Based on practical evidence
100+ peer reviewed papers
Available in many programming languages (e.g. C++, Haskell, Pyro, OCaml, Unison)
Deployed in industrial technologies (e.g. GitHub’s semantic, Meta’s React, Uber’s Pyro)

Restriction: single-shot continuations

Why effect handlers

Any control extension must work

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predicable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing
compatible with builtin side-effects
transparent cost of instructions
seamless interop

Why effect handlers

Any control extension must work

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predicable cost model

. . . with legacy code

reference counting suffices

first-order abstraction
no fundamental dependency
straightforward typing
compatible with builtin side-effects
transparent cost of instructions
seamless interop

Why effect handlers

Any control extension must work

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predicable cost model

. . . with legacy code

reference counting suffices
first-order abstraction

no fundamental dependency
straightforward typing
compatible with builtin side-effects
transparent cost of instructions
seamless interop

Why effect handlers

Any control extension must work

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predicable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency

straightforward typing
compatible with builtin side-effects
transparent cost of instructions
seamless interop

Why effect handlers

Any control extension must work

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predicable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing

compatible with builtin side-effects
transparent cost of instructions
seamless interop

Why effect handlers

Any control extension must work

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predicable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing
compatible with builtin side-effects

transparent cost of instructions
seamless interop

Why effect handlers

Any control extension must work

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predicable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing
compatible with builtin side-effects
transparent cost of instructions

seamless interop

Why effect handlers

Any control extension must work

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predicable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing
compatible with builtin side-effects
transparent cost of instructions
seamless interop

Variations on semantics of effect handlers
Deep allocation, capture, and resumption

cont.new V with H ⇝ cont⟨H;V ⟩, where V = λ⟨⟩.M
resume V with W ⇝ handle E [W] with H, where V = cont⟨H;E⟩

handle E [op V] with H ⇝ N[cont⟨H;E⟩/r ,V /x], where {op p r 7→ N} ∈ H

Shallow allocation, capture, and resumption

cont.new V ⇝ cont⟨V ⟩, where V = λ⟨⟩.M
resume V with W ⇝ E [W], where V = cont⟨E⟩

handle E [op V] with H ⇝ N[cont⟨E⟩/r ,V /x], where {op p r 7→ N} ∈ H

‘Sheep’ allocation, capture, and resumption

cont.new V ⇝ cont⟨V ⟩, where V = λ⟨⟩.M
resume V with ⟨H;W ⟩ ⇝ handle E [W] with H, where V = cont⟨E⟩

handle E [op V] with H ⇝ N[cont⟨E⟩/r ,V /x], where {op p r 7→ N} ∈ H

Variations on semantics of effect handlers
Deep allocation, capture, and resumption

cont.new V with H ⇝ cont⟨H;V ⟩, where V = λ⟨⟩.M
resume V with W ⇝ handle E [W] with H, where V = cont⟨H;E⟩

handle E [op V] with H ⇝ N[cont⟨H;E⟩/r ,V /x], where {op p r 7→ N} ∈ H

Shallow allocation, capture, and resumption

cont.new V ⇝ cont⟨V ⟩, where V = λ⟨⟩.M
resume V with W ⇝ E [W], where V = cont⟨E⟩

handle E [op V] with H ⇝ N[cont⟨E⟩/r ,V /x], where {op p r 7→ N} ∈ H

‘Sheep’ allocation, capture, and resumption

cont.new V ⇝ cont⟨V ⟩, where V = λ⟨⟩.M
resume V with ⟨H;W ⟩ ⇝ handle E [W] with H, where V = cont⟨E⟩

handle E [op V] with H ⇝ N[cont⟨E⟩/r ,V /x], where {op p r 7→ N} ∈ H

Variations on semantics of effect handlers
Deep allocation, capture, and resumption

cont.new V with H ⇝ cont⟨H;V ⟩, where V = λ⟨⟩.M
resume V with W ⇝ handle E [W] with H, where V = cont⟨H;E⟩

handle E [op V] with H ⇝ N[cont⟨H;E⟩/r ,V /x], where {op p r 7→ N} ∈ H

Shallow allocation, capture, and resumption

cont.new V ⇝ cont⟨V ⟩, where V = λ⟨⟩.M
resume V with W ⇝ E [W], where V = cont⟨E⟩

handle E [op V] with H ⇝ N[cont⟨E⟩/r ,V /x], where {op p r 7→ N} ∈ H

‘Sheep’ allocation, capture, and resumption

cont.new V ⇝ cont⟨V ⟩, where V = λ⟨⟩.M
resume V with ⟨H;W ⟩ ⇝ handle E [W] with H, where V = cont⟨E⟩

handle E [op V] with H ⇝ N[cont⟨E⟩/r ,V /x], where {op p r 7→ N} ∈ H

Coroutines in WasmFX

‘Seesaw’ coroutines (Ganz, Friedman, and Wand 1999).

$up

$down

We will have two modules
co2 implementing the coroutine runtime
example interleaved streams of natural numbers

Running example: coroutines (1)

;; interface for running two coroutines
;; non-interleaving implementation
(module $co2
;; type alias task = [] -> []
(type $task (func))

;; yield : [] -> []
(func $yield (export "yield")
(nop))

;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
;; run the tasks sequentially
(call_ref $task (local.get $task1))
(call_ref $task (local.get $task2))

)
)

Running example: coroutines (2)
(module $example ;; main example: streams of odd and even naturals
...
;; imports yield : [] -> []
(func $yield (import "co2" "yield"))

...
)

Running example: coroutines (3)
(module $example
...
;; odd : [i32] -> []
;; prints the first $niter odd natural numbers
(func $odd (param $niter i32)
(local $n i32) ;; next odd number
(local $i i32) ;; iterator
(local.set $n (i32.const 1)) ;; initialise locals
(local.set $i (i32.const 1)) ;; ...
(block $b
(loop $l
(br_if $b (i32.gt_u (local.get $i) (local.get $niter))) ;; termination condition
(call $print (local.get $n)) ;; print the current odd number
(local.set $n (i32.add (local.get $n) (i32.const 2))) ;; compute next odd number
(local.set $i (i32.add (local.get $i) (i32.const 1))) ;; increment the iterator
(call $yield) ;; yield control
(br $l)))) ;; repeat

;; even : [i32] -> []
;; prints the first $niter even natural numbers
(func $even (param $niter i32) ...)
...

)

Running example: coroutines (4)
(module $example
...
;; odd5, even5 : [] -> []
(func $odd5 (export "odd5")

(call $odd (i32.const 5)))
(func $even5 (export "even5")

(call $even (i32.const 5)))
)

;; calling $run with $odd5 and $even5...
(call $run (ref.func $odd5) (ref.func $even5))
;; ... prints 1 3 5 7 9 2 4 6 8 10

Instructions: declaring control tags

Control tag declaration
(tag $tag (param σ∗) (result τ∗))

it’s a mild extension of Wasm’s exception tags

(known in the literature as an ‘operation symbol’ (Plotkin and Pretnar 2013))

Refactoring the co2 module (1)

(module $co2
;; type alias task = [] -> []
(type $task (func))

;; yield : [] -> []
(tag $yield)

;; yield : [] -> []
(func $yield (export "yield")
(nop))

;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
...)

)

Instructions: creating continuations

Continuation type
(cont $ft)

cont is a new reference type constructor parameterised by a function type, $ft : [σ∗] → [τ∗]

Continuation allocation

cont.new $ct : [(ref null $ft)] → [(ref $ct)]

where $ft : [σ∗] → [τ∗]
and $ct : cont $ft

Refactoring the co2 module (2)
(module $co2
;; type alias $task = [] -> []
(type $task (func))

;; type alias $ct = $task
(type $ct (cont $task))

...

;; run : [(ref $task) (ref $task)] -> []
;; implements a ’seesaw’ (c.f. Ganz et al. (ICFP@99))
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
;; locals to manage continuations
(local $up (ref null $ct))
(local $down (ref null $ct))
(local $isOtherDone i32)
;; initialise locals
(local.set $up (cont.new $ct (local.get $task1)))
(local.set $down (cont.new $ct (local.get $task2)))
...)

)

Thinking of cont.new in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP (null)
SP
$task1
red zone

PP (null)
SP
$task2
red zone

cont.new allocates a new stack segment

New segments are initially suspended

Thinking of cont.new in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP (null)
SP
$task1
red zone

PP (null)
SP
$task2
red zone

cont.new allocates a new stack segment

New segments are initially suspended

Thinking of cont.new in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP (null)
SP
$task1
red zone

PP (null)
SP
$task2
red zone

cont.new allocates a new stack segment

New segments are initially suspended

Instructions: invoking continuations

Continuation resumption

resume $ct (tag $tag $h)∗ : [σ∗ (ref null $ct)] → [τ∗]

where {$tagi : [σ
∗
i] → [τ∗i] and $hi : [σ∗

i (ref null $cti)] and
$cti : cont $fti and $fti : [τ

∗
i] → [τ∗]}i

and $ct : cont $ft
and $ft : [σ∗] → [τ∗]

The instruction fully consume the continuation argument

Refactoring the co2 module (3)
(module $co2
... ;; declarations of $task, $yield, etc
;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
... ;; initialisation of $up and $down
;; run $up
(loop $h ;; handling loop
(block $on_yield (result (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $up)) ;; resume $up; handle $yield using $on_yield
(if (i32.eq (local.get $isOtherDone) (i32.const 1)) ;; $up finished; $down is already done?
(then (return))) ;; ... then exit

(local.get $down) ;; ... otherwise prepare to run $down
(local.set $up) ;; $up := $down
(local.set $isOtherDone (i32.const 1)) ;; mark other as done
(br $h) ;; repeat

) ;; yield-case definition; stack: [(cont $ct)]
(local.set $up) ;; set $up to the current continuation
(if (i32.eqz (local.get $isOtherDone)) ;; is $down already done?
(then (local.get $down) ;; ... then swap $up and $down

(local.set $down (local.get $up))
(local.set $up)))

(br $h))) ;; repeat
)

Thinking of resume in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP
SP
$task1
red zone

PP (null)
SP
$task2
red zone

resume transfers control from the parent to the
child stack

The pointer between parent and child is inverted

Thinking of resume in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP
SP
$task1
red zone

PP (null)
SP
$task2
red zone

resume transfers control from the parent to the
child stack

The pointer between parent and child is inverted

Instructions: suspending continuations

Continuation suspension
suspend $tag : [σ∗] → [τ∗]

where $tag : [σ∗] → [τ∗]

Refactoring the co2 module (4)

(module $co2
;; type alias task = [] -> []
(type $task (func))
;; type alias ct = $task
(type $ct (cont $task))

;; yield : [] -> []
(tag $yield (param) (result))

;; yield : [] -> []
(func $yield (export "yield")
(suspend $yield))

;; run : [(ref $task) (ref $task)] -> []
;; implements a ’seesaw’ (c.f. Ganz et al. (ICFP@99))
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
...)

)

Now (call $run (ref.func $odd5) (ref.func $even5)) prints 1 2 3 4 5 6 7 8 9 10

Thinking of suspend in terms of stacks

PP (null)
SP
up
down
· · ·
contup
· · ·
red zone

PP
SP
· · ·
suspend

red zone

PP (null)
SP
$task2
red zone

suspend transfers control a child to a (grand)parent

The pointer between child and parent is inverted

Thinking of suspend in terms of stacks

PP (null)
SP
up
down
· · ·
contup
· · ·
red zone

PP
SP
· · ·
suspend

red zone

PP (null)
SP
$task2
red zone

suspend transfers control a child to a (grand)parent

The pointer between child and parent is inverted

Current status of the proposal

What has already been done
Formal specification
Informal explainer documentation
Reference implementation
A proof-of-concept implementation in Wasmtime

What is happening now
Fine-tune the implementation

What is going to happen next
Gathering performance evidence

Preliminary performance results

Context switching microbenchmark

Relative speed Binary size Memory usage
Asyncify - 36 kb 66.0 mb
Bespoke 0.5× 27 kb 15.7 mb
WasmFX 0.25× 24 kb 63.9 mb

Table: Performance characteristics for webserver microbenchmark

Binary file size microbenchmarks

main-kjp.go coroutines.go
Asyncify 597 kb 40.0 kb
WasmFX 156 kb 7.2 kb

Table: Binary size comparison for TinyGo Programs

Summary

Summary
Effect handlers provide a modular and extensible basis for stack switching in Wasm
Effect handlers are a proven technology
WasmFX is a minimal and compatible extension to Wasm
Proof-of-concept implementation in Wasmtime

The work is actively being turned into a proposal; for more details see

https://wasmfx.dev

Comments and feedback are welcome!

https://wasmfx.dev

References
Sitaram, Dorai (1993). “Handling Control”. In: PLDI. ACM, pp. 147–155.
Ganz, Steven E., Daniel P. Friedman, and Mitchell Wand (1999). “Trampolined Style”. In: ICFP. ACM,

pp. 18–27.
Plotkin, Gordon D. and Matija Pretnar (2013). “Handling Algebraic Effects”. In: Logical Methods in

Computer Science 9.4.
Haas, Andreas et al. (2017). “Bringing the web up to speed with WebAssembly”. In: PLDI. ACM,

pp. 185–200.
Forster, Yannick et al. (2019). “On the expressive power of user-defined effects: Effect handlers,

monadic reflection, delimited control”. In: J. Funct. Program. 29, e15.
Hillerström, Daniel (2021). “Foundations for Programming and Implementing Effect Handlers”.

PhD thesis. The University of Edinburgh, Scotland, UK.
Sivaramakrishnan, K. C. et al. (2021). “Retrofitting effect handlers onto OCaml”. In: PLDI. ACM,

pp. 206–221.
Ghica, Dan et al. (2022). “High-Level Type-Safe Effect Handlers in C++”. In: Proc. ACM Program.

Lang. 6.OOPSLA, pp. 1–30.
Thomson, Patrick et al. (2022). “Fusing industry and academia at GitHub (experience report)”. In:

Proc. ACM Program. Lang. 6.ICFP, pp. 496–511.

Continuation binding, cancellation, and trapping

Partial continuation application

cont.bind (type $ct) : [σ∗
0 (ref null $ct)] → [(ref $ct ′)]

where $ct : cont $ft and $ft : [σ∗
0 σ

∗
1] → [τ∗]

and $ct ′ : cont $ft ′ and $ft ′ : [σ∗
1] → [τ∗]

Continuation cancellation

resume_throw (tag $exn) (tag $tag $h)∗ : [σ∗
0 (ref null $ct)] → [τ∗]

where $exn : [σ∗
0] → [], {$tagi : [σ

∗
i] → [τ∗i] and $hi : [σ∗

i (ref null $cti)] and
$cti : cont $fti and $fti : [τ

∗
i] → [τ∗]}i

and $ct : cont ([σ∗] → [τ∗]

Control barriers
barrier $lbl (type $bt) instr∗ : [σ∗] → [τ∗]

where $bt = [σ∗] → [τ∗] and instr∗ : [σ∗] → [τ∗]

	References

