
Typed Continuations, the Wasmtime Perspective

Daniel Hillerström

Computing Systems Laboratory
Zurich Research Center

Huawei Technologies, Switzerland

July 17, 2023

I am but one of many

Sam Lindley Andreas Rossberg Daan Leijen KC Sivaramakrishnan

Matija Pretnar Frank Emrich Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

I am but one of many

Sam Lindley Andreas Rossberg Daan Leijen KC Sivaramakrishnan

Matija Pretnar Frank Emrich Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

Paper accepted at OOPSLA’23

OOPSLA’23 artifact

https://github.com/wasmfx/oopsla23-artifx

https://github.com/wasmfx/oopsla23-artifx

WasmFX: Current status

What we got so far
Formal specification (https://github.com/WebAssembly/stack-switching/blob/main/
proposals/continuations/Overview.md)
Informal explainer document (https://github.com/WebAssembly/stack-switching/blob/
main/proposals/continuations/Explainer.md)
Reference implementation (https://github.com/effect-handlers/wasm-spec)
Research prototype implementation in Wasmtime
(https://github.com/effect-handlers/wasmtime)

This project is known as WasmFX.

https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/effect-handlers/wasm-spec
https://github.com/effect-handlers/wasmtime

WasmFX: Current status

What we got so far
Formal specification (https://github.com/WebAssembly/stack-switching/blob/main/
proposals/continuations/Overview.md)
Informal explainer document (https://github.com/WebAssembly/stack-switching/blob/
main/proposals/continuations/Explainer.md)
Reference implementation (https://github.com/effect-handlers/wasm-spec)
Research prototype implementation in Wasmtime
(https://github.com/effect-handlers/wasmtime)

This project is known as WasmFX.

https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/effect-handlers/wasm-spec
https://github.com/effect-handlers/wasmtime

Wasmtime overview

Wasmtime fiber interface

The essence of the Wasmtime fiber interface in Rust

trait FiberStack {
fn new(size: usize) -> io::Result<Self>

}

trait<Resume, Yield, Return> Fiber<Resume, Yield, Return> {
fn new(stack: FiberStack,

func: FnOnce(Resume, &Suspend<Resume, Yield, Return>) -> Return
fn resume(&self, val: Resume) -> Result<Return, Yield>

}

trait Suspend<Resume, Yield, Return> {
fn suspend(&self, Yield) -> Resume

}

Wasmtime fiber interface

The essence of the Wasmtime fiber interface in Rust

trait FiberStack {
fn new(size: usize) -> io::Result<Self>
fn malloc(size: usize) -> io::Result<Self>

}

trait<Resume, Yield, Return> Fiber<Resume, Yield, Return> {
fn new(stack: FiberStack,

func: FnOnce(Resume, &Suspend<Resume, Yield, Return>) -> Return
fn resume(&self, val: Resume) -> Result<Return, Yield>

}

trait Suspend<Resume, Yield, Return> {
fn suspend(&self, Yield) -> Resume

}

Jumping between worlds

Wasm

Rust

lib
ca

ll

Implications of jumping between Wasm and Rust

Libcalling
Function preamble sets up a trampoline
Boxing required for |payloads| > 1
Everything is coded against an universal type

The instruction set extension

Types
cont $ft

✓

Tags
tag $tag (param σ∗) (result τ∗)

✓

Instructions
cont.new

✓

resume

✓

cont.bind

✓

suspend

✓

resume_throw

barrier

The instruction set extension

Types
cont $ft ✓

Tags
tag $tag (param σ∗) (result τ∗)

✓

Instructions
cont.new

✓

resume

✓

cont.bind

✓

suspend

✓

resume_throw

barrier

The instruction set extension

Types
cont $ft ✓

Tags
tag $tag (param σ∗) (result τ∗) ✓

Instructions
cont.new

✓

resume

✓

cont.bind

✓

suspend

✓

resume_throw

barrier

The instruction set extension

Types
cont $ft ✓

Tags
tag $tag (param σ∗) (result τ∗) ✓

Instructions
cont.new ✓

resume

✓

cont.bind

✓

suspend

✓

resume_throw

barrier

The instruction set extension

Types
cont $ft ✓

Tags
tag $tag (param σ∗) (result τ∗) ✓

Instructions
cont.new ✓

resume ✓

cont.bind

✓

suspend

✓

resume_throw

barrier

The instruction set extension

Types
cont $ft ✓

Tags
tag $tag (param σ∗) (result τ∗) ✓

Instructions
cont.new ✓

resume ✓

cont.bind ✓

suspend

✓

resume_throw

barrier

The instruction set extension

Types
cont $ft ✓

Tags
tag $tag (param σ∗) (result τ∗) ✓

Instructions
cont.new ✓

resume ✓

cont.bind ✓

suspend ✓

resume_throw

barrier

The instruction set extension

Types
cont $ft ✓

Tags
tag $tag (param σ∗) (result τ∗) ✓

Instructions
cont.new ✓

resume ✓

cont.bind ✓

suspend ✓

resume_throw

barrier

The instruction set extension

Types
cont $ft ✓

Tags
tag $tag (param σ∗) (result τ∗) ✓

Instructions
cont.new ✓

resume ✓

cont.bind ✓

suspend ✓

resume_throw

barrier

Type section extension

Continuation type
(cont $ft)

cont is a new reference type constructor parameterised by a function type, $ft : [σ∗] → [τ∗]

Tag section extension

Control tag declaration
(tag $tag (param σ∗) (result τ∗))

it’s a mild extension of the exception handling proposal’s tag

Instruction extension (1)

Continuation allocation
cont.new : [(ref null $ft)] → [(ref $ct)]

where $ft : [σ∗] → [τ∗]
and $ct : cont $ft

Spec change: Continuation type annotation on cont.new.

Instruction extension (1)

Continuation allocation

cont.new $ct : [(ref null $ft)] → [(ref $ct)]

where $ft : [σ∗] → [τ∗]
and $ct : cont $ft

Spec change: Continuation type annotation on cont.new.

Implementation of cont.new

Number of libcalls: 1

Implementation of cont.new

Number of libcalls: 1

Instruction extension (2)

Continuation resumption

resume (tag $tag $h)∗ : [σ∗ (ref null $ct)] → [τ∗]

where {$tagi : [σ∗
i] → [τ∗i] and $hi : [σ∗

i (ref null $cti)] and
$cti : cont $fti and $fti : [τ

∗
i] → [τ∗]}i

and $ct : cont $ft
and $ft : [σ∗] → [τ∗]

The instruction fully consumes the continuation argument.

Spec change: Type annotation on resume

Instruction extension (2)

Continuation resumption

resume $ct (tag $tag $h)∗ : [σ∗ (ref null $ct)] → [τ∗]

where {$tagi : [σ∗
i] → [τ∗i] and $hi : [σ∗

i (ref null $cti)] and
$cti : cont $fti and $fti : [τ

∗
i] → [τ∗]}i

and $ct : cont $ft
and $ft : [σ∗] → [τ∗]

The instruction fully consumes the continuation argument.

Spec change: Type annotation on resume

Implementation of resume

Number of libcalls: 4

Implementation of resume

Number of libcalls: 4

Basic block encoding of resume

Instruction extension (3)

Partial continuation application

cont.bind (type $ct) : [σ∗
0 (ref null $ct)] → [(ref $ct ′)]

where $ct : cont $ft and $ft : [σ∗
0 σ

∗
1] → [τ∗]

and $ct ′ : cont $ft ′ and $ft ′ : [σ∗
1] → [τ∗]

Spec change: cont.bind is annotated with both input and output continuation type.

Instruction extension (3)

Partial continuation application

cont.bind $sct $dct : [σ∗
0 (ref null $sct)] → [(ref $dct)]

where $sct : cont $ft and $ft : [σ∗
0 σ

∗
1] → [τ∗]

and $dst : cont $ft ′ and $ft ′ : [σ∗
1] → [τ∗]

Spec change: cont.bind is annotated with both input and output continuation type.

Implementation of cont.bind

Number of libcalls: 3

Implementation of cont.bind

Number of libcalls: 3

Instruction extension (4)

Continuation suspension
suspend $tag : [σ∗] → [τ∗]

where $tag : [σ∗] → [τ∗]

Implementation of suspend

Number of libcalls: 3

Implementation of suspend

Number of libcalls: 3

Instruction extension (5)

Continuation cancellation

resume_throw (tag $exn) (tag $tag $h)∗ : [σ∗
0 (ref null $ct)] → [τ∗]

where $exn : [σ∗
0] → [], {$tagi : [σ∗

i] → [τ∗i] and $hi : [σ∗
i (ref null $cti)] and

$cti : cont $fti and $fti : [τ
∗
i] → [τ∗]}i

and $ct : cont ([σ∗] → [τ∗]

Spec change: resume_throw is annotated with the type of the continuation.

Instruction extension (5)

Continuation cancellation

resume_throw $ct (tag $exn) (tag $tag $h)∗ : [σ∗
0 (ref null $ct)] → [τ∗]

where $exn : [σ∗
0] → [], {$tagi : [σ∗

i] → [τ∗i] and $hi : [σ∗
i (ref null $cti)] and

$cti : cont $fti and $fti : [τ
∗
i] → [τ∗]}i

and $ct : cont ([σ∗] → [τ∗]

Spec change: resume_throw is annotated with the type of the continuation.

Instruction extension (6)

Control barriers
barrier $lbl (type $bt) instr∗ : [σ∗] → [τ∗]

where $bt = [σ∗] → [τ∗] and instr∗ : [σ∗] → [τ∗]

Spec change: simplify syntax.

Instruction extension (6)

Control barriers
barrier $lbl $bt instr∗ : [σ∗] → [τ∗]

where $bt = [σ∗] → [τ∗] and instr∗ : [σ∗] → [τ∗]

Spec change: simplify syntax.

Preliminary experiments (1)

Microbenchmark
Create 10000000 coroutines
Each coroutine yields once
10000 coroutines are ready to run, the rest are blocked

Run-time ratio Memory footprint ratio
Asyncify 1.0 1.0 (63mb)
WasmFX 0.2 1.0 (63mb)

earlier version

Caution: the implementations are backed by different data structures.

Preliminary experiments (1)

Microbenchmark
Create 10000000 coroutines
Each coroutine yields once
10000 coroutines are ready to run, the rest are blocked

Run-time ratio Memory footprint ratio
Asyncify 1.0 1.0 (63mb)
WasmFX 0.2 1.0 (63mb)

earlier version

Caution: the implementations are backed by different data structures.

Preliminary experiments (1)

Microbenchmark
Create 10000000 coroutines
Each coroutine yields once
10000 coroutines are ready to run, the rest are blocked

Run-time ratio Memory footprint ratio
Asyncify 1.0 1.0 (66mb)
WasmFX 0.28 1.05 (63mb)

earlier version

Caution: the implementations are backed by different data structures.

Preliminary experiments (1)

Microbenchmark
Create 10000000 coroutines
Each coroutine yields once
10000 coroutines are ready to run, the rest are blocked

Run-time ratio Memory footprint ratio
Asyncify 1.0 1.0 (66mb)
WasmFX 0.28 1.05 (63mb)

earlier version

Caution: the implementations are backed by different data structures.

Preliminary experiments (2)

Wasm binary size microbenchmarks
Patched TinyGo to emit WasmFX
Compile programs from the TinyGo repository

main-kjp.go coroutines.go
Asyncify 597 KB 40 KB
WasmFX 156 KB

(26.13%)

7.2 KB

(18%)

Preliminary experiments (2)

Wasm binary size microbenchmarks
Patched TinyGo to emit WasmFX
Compile programs from the TinyGo repository

main-kjp.go coroutines.go
Asyncify 597 KB 40 KB
WasmFX 156 KB

(26.13%)

7.2 KB

(18%)

Preliminary experiments (2)

Wasm binary size microbenchmarks
Patched TinyGo to emit WasmFX
Compile programs from the TinyGo repository

main-kjp.go coroutines.go
Asyncify 597 KB 40 KB
WasmFX 156 KB (26.13%) 7.2 KB (18%)

Next steps

Benchmarks
Microbenchmarking (e.g. Sieve of Eratosthenes)
Macrobenchmarking (e.g. HTTP/2-compliant webserver)

Future experiments (1)

Backends
libmprompt
Internalise Wasmtime Fiber in codegen
Cranelift native stack switching

Memory
Deferred stack allocation
Stack pools
Novel allocation schemes

Extensions
Named resume blocks
First-class & generative control tags

Future experiments (2)

Toolchain support
Compiling control abstractions
Retrofitting existing toolchains
Develop new (researchy) toolchains

An open invitation

We’d like to work with parties interested in exploring compilation to the WasmFX instruction set.

Future experiments (2)

Toolchain support
Compiling control abstractions
Retrofitting existing toolchains
Develop new (researchy) toolchains

An open invitation

We’d like to work with parties interested in exploring compilation to the WasmFX instruction set.

Summary

Summary
A working prototype implementation of WasmFX in wasmtime
Implementation feedback led to minor spec changes
Next: focus on building benchmarks
Next next: focus on performance

https://wasmfx.dev

https://wasmfx.dev

References

Phipps-Costin, Luna et al. (2023). “Continuing WebAssembly with Effect Handlers”. In: Proc. ACM
Program. Lang. 7.OOPSLA2. To appear.

	References

