Typed Continuations, the Wasmtime Perspective

Daniel Hillerstrom

Computing Systems Laboratory
Zurich Research Center
Huawei Technologies, Switzerland

July 17, 2023

| am but one of many

s

Sam Lindley Andreas Rossberg

Matija Pretnar Frank Emrich Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

| am but one of many

s

Sam Lindley Andreas Rossberg

Matija Pretnar Frank Emrich Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

Paper accepted at OOPSLA'23

Continuing WebAssembly with Effect Handlers

LUNA PHIPPS-COSTIN, Northeastern University, USA

ANDREAS ROSSBERG, Unaffiliated, Germany

ARJUN GUHA, Northeastern University, USA

DAAN LEIJEN, Microsoft Research, USA

DANIEL HILLERSTROM, Huawei Zurich Research Center, Switzerland
KC SIVARAMAKRISHNAN, Tarides and II'T Madras, India

MATIJA PRETNAR, Ljubljana University, Slovenia

SAM LINDLEY, The University of Edinburgh, United Kingdom

WebAssembly (Wasm) is a low-level portable code format offering near native performance. It is intended
as a compilation target for a wide variety of source languages. However, Wasm provides no direct support
for non-local control flow features such as async/await, generators/iterators, lightweight threads, first-class
continuations, etc. This means that compilers for source languages with such features must ceremoniously
transform whole source programs in order to target Wasm.

We present WasmIX, an extension to Wasm which provides a universal target for non-local control features
via effect handlers, enabling compilers to translate such features directly into Wasm. Our extension is minimal
and only adds three main instructions for creating, suspending, and resuming continuations. Moreover, our
primitive instructions are type-safe providing typed continuations which are well-aligned with the design
principles of Wasm whose stacks are typed.

A'23 artifact

= README.md z

Artifact Evaluation Instructions

This document describes how to reproduce the experiments in Section 5.1 of the paper:

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerstrém, KC Sivaramakrishnan, Matija
Pretnar, Sam Lindley, "Continuing WebAssembly with Effect Handlers", Proc. ACM Program. Lang. 7(O0PSLA2), 2023.

Note: The empirical data presented in the paper were measured on a particular reference machine available
at the time of writing. In order to reproduce this data, it would be necessary to have access to the particular
reference machine (or a virtually identical one). The purpose of this document is to describe how to obtain
measurements like those reported in the paper.

This document is best viewed on GitHub (https://github.com/wasmfx/oopsla23-artifx).

Overview of the Artifact

The artifact is structured as follows

. The section Getting Started Guide enumerates the software and hardware requirements to build and run
the artifact software.

N

. The section Step by Step Instructions is a detailed guide on how to run the experiments inside a Docker
container running the provided Docker image.

w

. The section Inspecting the Source Files highlights some relevant source files with our WasmFX additions.

IS

. The section The WasmFX Toolchains describes how our "toolchains” work.

«

. The section Reference Machine Specification contains some detailed information about the reference
machine used to conduct the experiments.

https://github.com/wasmfx/oopsla23-artifx

https://github.com/wasmfx/oopsla23-artifx

WasmFX: Current status

What we got so far

e Formal specification (https://github.com/WebAssembly/stack-switching/blob/main/
proposals/continuations/Overview.md)

o Informal explainer document (https://github.com/WebAssembly/stack-switching/blob/
main/proposals/continuations/Explainer.md)

@ Reference implementation (https://github.com/effect-handlers/wasm-spec)

@ Research prototype implementation in Wasmtime
(https://github.com/effect-handlers/wasmtime)

This project is known as WasmFX.

https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/effect-handlers/wasm-spec
https://github.com/effect-handlers/wasmtime

WasmFX: Current status

What we got so far

e Formal specification (https://github.com/WebAssembly/stack-switching/blob/main/
proposals/continuations/Overview.md)

o Informal explainer document (https://github.com/WebAssembly/stack-switching/blob/
main/proposals/continuations/Explainer.md)

@ Reference implementation (https://github.com/effect-handlers/wasm-spec)

@ Research prototype implementation in Wasmtime
(https://github.com/effect-handlers/wasmtime)

This project is known as WasmFX.

https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/effect-handlers/wasm-spec
https://github.com/effect-handlers/wasmtime

Wasmtime overview

Producer pipeline

wasm-tools

Parser

Validator

Codegen

Environ

cranelift

L

Runtime
Embedder API
VMContext

Libcalls [Wasmime Fiber

Wasmtime fiber interface

The essence of the Wasmtime fiber interface in Rust

trait FiberStack {
fn new(size: usize) -> io::Result<Self>

}

trait<Resume, Yield, Return> Fiber<Resume, Yield, Return> {
fn new(stack: FiberStack,
func: FnOnce(Resume, &Suspend<Resume, Yield, Return>) -> Return
fn resume(&self, val: Resume) -> Result<Return, Yield>

}

trait Suspend<Resume, Yield, Return> {
fn suspend(&self, Yield) -> Resume

}

Wasmtime fiber interface

The essence of the Wasmtime fiber interface in Rust

trait FiberStack {
fn new(size: usize) -> io::Result<Self>
fn malloc(size: usize) -> io::Result<Self>

}

trait<Resume, Yield, Return> Fiber<Resume, Yield, Return> {
fn new(stack: FiberStack,
func: FnOnce(Resume, &Suspend<Resume, Yield, Return>) -> Return
fn resume(&self, val: Resume) -> Result<Return, Yield>

}

trait Suspend<Resume, Yield, Return> {
fn suspend(&self, Yield) -> Resume
}

Jumping between worlds

Rust

Implications of jumping between Wasm and Rust

Libcalling
@ Function preamble sets up a trampoline
@ Boxing required for |payloads| > 1
o Everything is coded against an universal type

The instruction set extension

Types
o cont $ft

Tags
o tag $tag (param o*) (result 7*)

Instructions

@ cont.new
resume
cont.bind
suspend

resume_throw

barrier

The instruction set extension

Types
e cont $ft v

Tags
o tag $tag (param o*) (result 7*)

Instructions

@ cont.new
resume
cont.bind
suspend

resume_throw

barrier

The instruction set extension

Types
e cont $ft v

Tags
o tag $tag (param o*) (result 7*) v/

Instructions

@ cont.new
resume
cont.bind
suspend

resume_throw

barrier

The instruction set extension

Types
e cont $ft v

Tags
o tag $tag (param o*) (result 7*) v/

Instructions

@ cont.new v/
resume
cont.bind
suspend

resume_throw

barrier

The instruction set extension

Types
e cont $ft v

Tags
o tag $tag (param o*) (result 7*) v/

Instructions

@ cont.new v/
resume v
cont.bind
suspend

resume_throw

barrier

The instruction set extension

Types
e cont $ft v

Tags
o tag $tag (param o*) (result 7*) /

Instructions

@ cont.new v/
resume v
cont.bind /
suspend

resume_throw

barrier

The instruction set extension

Types
e cont $ft v

Tags
o tag $tag (param o*) (result 7*) /

Instructions

@ cont.new v/
resume v
cont.bind /
suspend /

resume_throw

barrier

The instruction set extension

Types
e cont $ft v

Tags
o tag $tag (param o*) (result 7*) /

Instructions

@ cont.new v/
resume v
cont.bind /
suspend /

resume_throw X

barrier

The instruction set extension

Types
e cont $ft v

Tags
o tag $tag (param o*) (result 7*) /

Instructions

@ cont.new v/
resume v
cont.bind /
suspend /

resume_throw X

barrier X

Type section extension

Continuation type
(cont $ft)

cont is a new reference type constructor parameterised by a function type, $ft : [g*] N [7.*]

Tag section extension

Control tag declaration
(tag $tag (param o) (result 7))

it's a mild extension of the exception handling proposal’s tag

Instruction extension (1)

Continuation allocation
cont.new : [(ref null $ft)] — [(ref $ct)]
where $ft : [o*] — [77]
and $ct : cont $ft

Instruction extension (1)

Continuation allocation
cont.new $ct : [(ref null $ft)] — [(ref $ct)]

where $ft : [0*] — [77]
and $ct : cont $ft

Spec change: Continuation type annotation on cont.new.

Implementation of cont.new

Execution stack

sp .
— cont.new

Number of libcalls: 1

libcall

ContinuationObject

Fiber: wasmtime: :Fiber

State: {Init,Active,Done}

InitArgsReturn: Vec<ul128>
ArgsBuffer: Vec<u128>

Fiber stack
[]

Implementation of cont.new

ContinuationObject

Fiber: wasmtime::Fiber
E . K State: {Init,Active,Done}
xecution stac InitArgsReturn: Vec<u128>
libcall
ArgsBuffer: Vec<u128>

ContRef

Fiber stack
[]

sp
—> cont.new

Number of libcalls: 1

Instruction extension (2)

Continuation resumption
resume (tag $tag $h)* : [o* (ref null $ct)] — [77]

where {S$tag; : [o}] — [7] and $h; : [0} (ref null $ct;)] and
$ct; :cont $ft; and $ft; : [7F] — [7*]}i
and $ct : cont $ft
and $ft : [0*] = [7*]

The instruction fully consumes the continuation argument.

Instruction extension (2)

Continuation resumption
resume $ct (tag $tag $h)* : [0* (ref null $ct)] — [77]

where {S$tag; : [o}] — [7] and $h; : [0} (ref null $ct;)] and
$ct; :cont $ft; and $ft; : [7F] — [7*]}i
and $ct : cont $ft

and $ft : [0*] = [7*]

The instruction fully consumes the continuation argument.

Spec change: Type annotation on resume

Implementation of resume

ContinuationObject

Fiber: wasmtime: :Fiber
E i tack State: {Init,Active,Done}
Xecution stac InitArgsReturn: Vec<ul128>
libcall
ArgsBuffer: Vec<u128>

ContRef

sp Fiber stack
—> resume

[]

Number of libcalls: 4

Implementation of resume

ContinuationObject

Fiber: wasmtime: :Fiber
E . K State: {Init,Active,Done}
xecution stac InitArgsReturn: Vec<ul128>

ArgsBuffer: Vec<u128>

Fiber stack

resume

SPL | <Args>

Number of libcalls: 4

Basic block encoding of resume

:

Resume

A

Return Suspend

Instruction extension (3)

Partial continuation application
cont.bind (type $ct) : [o5 (ref null $ct)] — [(ref $ct’)]

where $ct : cont $ft and $ft : [0 of] — [77]
and $ct’ : cont $ft' and $ft' : [0F] — [77]

Instruction extension (3)

Partial continuation application
cont.bind $sct $dct : [0 (ref null $sct)] — [(ref $dct))

where $sct : cont $ft and $ft : [of oF] = [7F]
and $dst : cont $ft’ and $ft’ : [0]] — [7*]

Spec change: cont.bind is annotated with both input and output continuation type.

Implementation of cont.bind

ContinuationObject

Fiber: wasmtime: :Fiber
E i tack State: {Init,Active,Done}
Xecution stac InitArgsReturn: Vec<ul128>

ArgsBuffer: Vec<u128>

sP Fiber stack
—>

cont.bind

[

Number of libcalls: 3

Implementation of cont.bind

ContinuationObject

Fiber: wasmtime: :Fiber
E i tack State: {Init,Active,Done}
Xecution stac InitArgsReturn: Vec<ul128>

ArgsBuffer: Vec<ul128>

sp Fiber stack
—>

cont.bind

[]

Number of libcalls: 3

Instruction extension (4)

Continuation suspension
suspend $tag : [0"] — [17]

where $tag : [0*] — [77]

Implementation of suspend

ContinuationObject

Fiber: wasmtime: :Fiber
E i tack State: {Init,Active,Done}
xecution stac InitArgsReturn: Vec<u12e>

ArgsBuffer: Vec<u128>

Fiber stack

resume

SR suspend

Number of libcalls: 3

Implementation of suspend

ContinuationObject

Fiber: wasmtime: :Fiber
E i tack State: {Init,Active,Done}
Xecution stac InitArgsReturn: Vec<ul128>

ArgsBuffer: Vec<ul128>

sp Fiber stack
—>

:handler>

[]

Number of libcalls: 3

Instruction extension (5)

Continuation cancellation
resume_throw (tag $exn) (tag $tag $h)* : [o5 (ref null $ct)] — [77]
where S$exn: [o§] — [], {Stag; : [0]] = [77] and $h; : [0} (ref null $ct;)] and

Sct; : cont $ft; and $ft; : [7] — [7*]}i
and $ct : cont ([o*] — [77]

Instruction extension (5)

Continuation cancellation
resume_throw $ct (tag $exn) (tag $tag $h)* : [0y (ref null $ct)] — [77]
where S$exn: [o§] — [], {Stag; : [0]] = [r7] and $h; : [0} (ref null $ct;)] and

$ct; : cont $ft; and S$ft;: [7',-;] — [T}
and $ct: cont ([o*] — [77]

Spec change: resume_throw is annotated with the type of the continuation.

Instruction extension (6)

Control barriers
barrier $/b/ (type $bt) instr* : [0*] — [7¥]

where $bt = [0*] — [7*] and instr* : [0*] — [7%]

Instruction extension (6)

Control barriers
barrier $/b/ $bt instr* : [0*] — [T*]

where $bt = [0*] — [7*] and instr* : [0*] — [7%]

Spec change: simplify syntax.

Preliminary experiments (1)

Microbenchmark
@ Create 10000000 coroutines
@ Each coroutine yields once

@ 10000 coroutines are ready to run, the rest are blocked

Preliminary experiments (1)

Microbenchmark

@ Create 10000000 coroutines

@ Each coroutine yields once

@ 10000 coroutines are ready to run, the rest are blocked

Run-time ratio

Memory footprint ratio

Asyncify

1.0

1.0 (63mb)

WasmFX

0.2

1.0 (63mb)

Preliminary experiments (1)

Microbenchmark

@ Create 10000000 coroutines

@ Each coroutine yields once

@ 10000 coroutines are ready to run, the rest are blocked

Run-time ratio

Memory footprint ratio

Asyncify

1.0

1.0 (66mb)

WasmFX

0.28

1.05 (63mb)

earlier version

Preliminary experiments (1)

Microbenchmark

@ Create 10000000 coroutines

@ Each coroutine yields once

@ 10000 coroutines are ready to run, the rest are blocked

Run-time ratio

Memory footprint ratio

Asyncify

1.0

1.0 (66mb)

WasmFX

0.28

1.05 (63mb)

Caution: the implementations are backed by different data structures.

earlier version

Preliminary experiments (2)

Wasm binary size microbenchmarks
o Patched TinyGo to emit WasmFX

o Compile programs from the TinyGo repository

Preliminary experiments (2)

Wasm binary size microbenchmarks
o Patched TinyGo to emit WasmFX

o Compile programs from the TinyGo repository

main-kjp.go coroutines.go
Asyncify | 597 KB 40 KB
WasmFX | 156 KB 7.2 KB

Preliminary experiments (2)

Wasm binary size microbenchmarks
o Patched TinyGo to emit WasmFX

o Compile programs from the TinyGo repository

main-kjp.go coroutines.go
Asyncify | 597 KB 40 KB
WasmFX | 156 KB (26.13%) | 7.2 KB (18%)

Next steps

Benchmarks
@ Microbenchmarking (e.g. Sieve of Eratosthenes)

@ Macrobenchmarking (e.g. HTTP/2-compliant webserver)

Future experiments (1)

Backends
@ libmprompt
@ Internalise Wasmtime Fiber in codegen

o Cranelift native stack switching

Memory
o Deferred stack allocation
@ Stack pools

@ Novel allocation schemes

Extensions
@ Named resume blocks

o First-class & generative control tags

Future experiments (2)

Toolchain support
@ Compiling control abstractions
@ Retrofitting existing toolchains

@ Develop new (researchy) toolchains

Future experiments (2)

Toolchain support
@ Compiling control abstractions
@ Retrofitting existing toolchains

@ Develop new (researchy) toolchains

An open invitation

We'd like to work with parties interested in exploring compilation to the WasmFX instruction set.

Summary

A working prototype implementation of WasmFX in wasmtime
Implementation feedback led to minor spec changes

Next: focus on building benchmarks

Next next: focus on performance

https://wasmfx.dev

https://wasmfx.dev

References

Phipps-Costin, Luna et al. (2023). "“Continuing WebAssembly with Effect Handlers". In: Proc. ACM
Program. Lang. 7.00PSLA2. To appear.

	References

